生成树计数 UVA 10766
//本题题意:首先每个点之间都可达,然后m列举出不可达的,求出最多的生成树方案;
//k这个变量是没用的。
//公式:ans矩阵=度矩阵-建边矩阵;
//度矩阵是当i==j时的,建边矩阵于平时定义可达矩阵相同
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
const int MAXN=;
LL A[MAXN][MAXN];
LL B[MAXN][MAXN];
LL determinant(int n)
{
LL res=;
for(int i=;i<=n;i++){
if(!B[i][i]){
bool flag=false;
for(int j=i+;j<=n;j++){
if(B[j][i]){
flag=true;
for(int k=i;k<n;k++){
swap(B[i][k],B[j][k]);
}
res=-res;
break;
}
}
if(!flag)
return ;
}
for(int j=i+;j<=n;j++){
while(B[j][i]){
LL t=B[i][i]/B[j][i];
for(int k=i;k<=n;k++){
B[i][k]=B[i][k]-t*B[j][k];
swap(B[i][k],B[j][k]);
}
res=-res;
}
}
res*=B[i][i];
}
return res;
}
int main()
{
int n,m,k;
while(~scanf("%d%d%d",&n,&m,&k))//这个k没卵用,完全可以无视
{
memset(A,,sizeof(A));
memset(B,,sizeof(B));
for(int i=;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
A[a][b]=A[b][a]=;
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i!=j&&!A[i][j]){
B[i][i]++;
B[i][j]=-;//减去邻接矩阵
}
}
}
n=n-;
LL ans=determinant(n);
printf("%lld\n",ans);
}
return ;
}
生成树计数 UVA 10766的更多相关文章
- Uva 10766 Organising the Organisation (Matrix_tree 生成树计数)
题目描述: 一个由n个部门组成的公司现在需要分层,但是由于员工间的一些小小矛盾,使得他们并不愿意做上下级,问在满足他们要求以后有多少种分层的方案数? 解题思路: 生成树计数模板题,建立Kirchhof ...
- UVa 10766 Organising the Organisation (生成树计数)
题意:给定一个公司的人数,然后还有一个boss,然后再给定一些人,他们不能成为直属上下级关系,问你有多少种安排方式(树). 析:就是一个生成树计数,由于有些人不能成为上下级关系,也就是说他们之间没有边 ...
- kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...
- 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1766 Solved: 946[Submit][Status ...
- SPOJ 104 HIGH - Highways 生成树计数
题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[ ...
- Luogu P5296 [北京省选集训2019]生成树计数
Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
- 「UVA10766」Organising the Organisation(生成树计数)
BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include ...
- SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...
随机推荐
- Laradock + tp5 + nginx 配置虚拟机域名始终跳转首页/502报错
laradock默认配置文件如下: 配置运用于本地windows+phpstudy 部署的laravel项目未出现问题,如下: server { listen ; listen [::]:; serv ...
- 机器学习作业(三)多类别分类与神经网络——Python(numpy)实现
题目太长了!下载地址[传送门] 第1题 简述:识别图片上的数字. import numpy as np import scipy.io as scio import matplotlib.pyplot ...
- oracle 处理Session不够用
1.执行语句 scope=spfile; scope=spfile; 2.查看现在的链接数 select count(*) from v$process --当前正在使用的 select value ...
- 关于setTimeout的妙用
定义 在指定的延迟时间之后调用一个函数或执行一个代码片段 这个是setTimeout最主要的功能,但也是很坑的地方,首先javascript其实是运行在单线程的环境下,意味者定时器会在未来的某个时间支 ...
- Centos7安装python3.6.5
安装python3.6.5,原来的python2.7.5并存 准备环境: 登录你的linux虚拟机或者云服务器,进入命令行界面如下图: 进入这样的窗口就是远程登录成功,我这里使用的是远程连接工具xsh ...
- python算术
''' 1.对每个数进行平方, 2.求和 ''' print(sum(x ** 2 for x in range(4)))
- 洛谷P1028 数的计算
https://www.luogu.org/problem/P1028 #include<cstdio> using namespace std; int main(){ ,i,f[]; ...
- Java上转型和下转型
Java 转型问题其实并不复杂,只要记住一句话:父类引用指向子类对象. 什么叫父类引用指向子类对象,且听我慢慢道来. 从2个名词开始说起:向上转型(upcasting) .向下转型(downcasti ...
- linux学习笔记1:linux驱动设备概述
- bootstrap图片上传控件 fileinput
前端 1.要引用的js fileinput.js fileinput.css <link type="text/css" rel="stylesheet& ...