生成树计数 UVA 10766
//本题题意:首先每个点之间都可达,然后m列举出不可达的,求出最多的生成树方案;
//k这个变量是没用的。
//公式:ans矩阵=度矩阵-建边矩阵;
//度矩阵是当i==j时的,建边矩阵于平时定义可达矩阵相同
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
const int MAXN=;
LL A[MAXN][MAXN];
LL B[MAXN][MAXN];
LL determinant(int n)
{
LL res=;
for(int i=;i<=n;i++){
if(!B[i][i]){
bool flag=false;
for(int j=i+;j<=n;j++){
if(B[j][i]){
flag=true;
for(int k=i;k<n;k++){
swap(B[i][k],B[j][k]);
}
res=-res;
break;
}
}
if(!flag)
return ;
}
for(int j=i+;j<=n;j++){
while(B[j][i]){
LL t=B[i][i]/B[j][i];
for(int k=i;k<=n;k++){
B[i][k]=B[i][k]-t*B[j][k];
swap(B[i][k],B[j][k]);
}
res=-res;
}
}
res*=B[i][i];
}
return res;
}
int main()
{
int n,m,k;
while(~scanf("%d%d%d",&n,&m,&k))//这个k没卵用,完全可以无视
{
memset(A,,sizeof(A));
memset(B,,sizeof(B));
for(int i=;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
A[a][b]=A[b][a]=;
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i!=j&&!A[i][j]){
B[i][i]++;
B[i][j]=-;//减去邻接矩阵
}
}
}
n=n-;
LL ans=determinant(n);
printf("%lld\n",ans);
}
return ;
}
生成树计数 UVA 10766的更多相关文章
- Uva 10766 Organising the Organisation (Matrix_tree 生成树计数)
题目描述: 一个由n个部门组成的公司现在需要分层,但是由于员工间的一些小小矛盾,使得他们并不愿意做上下级,问在满足他们要求以后有多少种分层的方案数? 解题思路: 生成树计数模板题,建立Kirchhof ...
- UVa 10766 Organising the Organisation (生成树计数)
题意:给定一个公司的人数,然后还有一个boss,然后再给定一些人,他们不能成为直属上下级关系,问你有多少种安排方式(树). 析:就是一个生成树计数,由于有些人不能成为上下级关系,也就是说他们之间没有边 ...
- kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...
- 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1766 Solved: 946[Submit][Status ...
- SPOJ 104 HIGH - Highways 生成树计数
题目链接:https://vjudge.net/problem/SPOJ-HIGH 解法: 生成树计数 1.构造 基尔霍夫矩阵(又叫拉普拉斯矩阵) n阶矩阵 若u.v之间有边相连 C[u][v]=C[ ...
- Luogu P5296 [北京省选集训2019]生成树计数
Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
- 「UVA10766」Organising the Organisation(生成树计数)
BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include ...
- SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...
随机推荐
- JavaDay3(上)
Java learning_Day3(上) 本人学习视频用的是马士兵的,也在这里献上 <链接:https://pan.baidu.com/s/1qKNGJNh0GgvlJnitTJGqgA> ...
- js中变量含(参数、数组)作用域传递问题
js没有块级作用域(你可以自己闭包或其他方法实现),只有函数级作用域和全局作用域,函数外面的变量函数里面可以找到使用,函数里面的变量外面无法访问到. 写这个是因为ES6中的一个例子开始的.首先看下例子 ...
- [TJOI2009] 猜数字 - 中国剩余定理
现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n,满足对于任意的i,n ...
- Oracle VM VirtualBox - VBOX_E_FILE_ERROR (0x80BB0004)
问题描述: 导入虚拟电脑 D:\LR\虚拟机相关\CentOS-6.7-x86_64-2G-40G-oracle-IP9\CentOS-6.7-x86_64-2G-40G-oracle-IP9.ovf ...
- flask入门(四)
数据库 flask在数据库这一块有一个扩展应用叫做flask-sqlalchemy,去虚拟环境里pip install一下,如下 我这边用的是mysql,指定的url是这个mysql://userna ...
- 一些常见的HTTP的请求状态码
200:正确的请求返回正确的结果,如果不想细分正确的请求结果都可以直接返回200. 201:表示资源被正确的创建.比如说,我们 POST 用户名.密码正确创建了一个用户就可以返回 201. 202:请 ...
- 【动态规划】【C/C++】简单的背包问题
简单的背包问题 背包问题动态规划中非常经典的一个问题,本文只包含01背包,完全背包和多重背包.更加详尽的背包问题的讲解请参考崔添翼大神的<背包九讲> 简单的01背包 问题导入:新年到了,m ...
- JS高级---案例:验证用户输入的是不是中文名字
案例:验证用户输入的是不是中文名字 [\u4e00-\u9fa5] <!DOCTYPE html> <html lang="en"> <head> ...
- JavaScript控制流和表达式
一.with语句 使用with语句可以简化JavaScript语句的一些类型,即把一个对象的多个引用降为一个引用,对with块里的属性和方法的引用将被看作是对对象的引用. <script> ...
- liunx 中设置zookeeper 自启动(service zookeeper does not support chkconfig)
在liunx 上设置zookeeper 自启动 1.进入目录 cd /etc/init.d 2.创建一个文件 vim zookeeper 3.编辑zookeepr 文件 连接liunx使用的软件是fi ...