pandas一些基本操作(DataFram和Series)_4
import numpy as np;
import pandas as pd;
kill_num=pd.Series([10,12,8,5,0,2,6])#击杀数量
#青铜1200-2000
#白银2001-2500
#黄金2501-3000
#铂金3001-3500
user_level=pd.Series([3100,3400,2700,2400,1200,2000,2500])#等级分数
#cov 协方差 corr相关系数
print(kill_num)
print(user_level)
print(kill_num.cov(user_level)) #正相关 越大接近运动越快 负相关 越小 远离运动越快
#
# year=pd.Series( )
print(kill_num.corr(user_level))#只能在负一到正1之间 越接近1相关程度越高,反之亦然
#唯一值 unique
ages=pd.Series([18,30,20,39.24,20,18,30])
print(ages.unique())
#计数 value_counts()
print(ages.value_counts()) #Series
#成员资格 isin([])
print(ages.isin([20,18,30]))
#层次索引
#Series层次索引
#2017年 苹果卖了200T 橘子卖了120T 香蕉卖了30T
#2018年 苹果卖了130T 橘子100T
sale_num=pd.Series({"2017-苹果":200,"2017-橘子":120,"2017-香蕉":30,"2018-苹果":130,"2018-橘子":100})
print(sale_num)
sale_num=pd.Series([200,120,30,130,100],index=[[2017,2017,2017,2018,2018],['苹果','橘子','香蕉','苹果','橘子']])
print(sale_num)
print(sale_num[2017])
print(sale_num[2018])
print(sale_num[2017,'苹果'])
print(sale_num[:,'苹果'])
print(sale_num.sum())
print(sale_num.sum(level=1))
#交换层次索引
print(sale_num.swaplevel())
print(sale_num.swaplevel().sort_index(level=0))
#层次索引和DataFram的互相转换
print(sale_num.unstack().T)
print(sale_num.unstack())
#排序
print(sale_num.sort_values(ascending=True)) #TRUE 正序 false 倒序
scores = pd.DataFrame(np.random.randint(0,60,[5,5]),columns=list("ABCDE"),index=list("abcde"))
print(scores)
print(scores.sort_values(by=['A'],ascending=False))#默认倒序
print(scores.sort_values(by=['A','C'],ascending=False))#A-->C 二次排序
print(scores.sort_values(by=['d'],axis=1)) #行排序
#排名
print(scores['A'])
print(scores['A'].rank(ascending=False)) #如果出现相同的时候会取中间值比如2.5
#method average 平均 min 共用最小值 first 谁先取到排前面
print(scores['A'].rank(ascending=False,method='max')) #x相同时候共用同一个值
pandas一些基本操作(DataFram和Series)_4的更多相关文章
- Pandas系列(一)-Series详解
一.初始Series Series 是一个带有 名称 和索引的一维数组,既然是数组,肯定要说到的就是数组中的元素类型,在 Series 中包含的数据类型可以是整数.浮点.字符串.Python对象等. ...
- pandas模块(数据分析)------Series
pandas是一个强大的Python数据分析的工具包. pandas是基于NumPy构建的. pandas的主要功能: 具备对其功能的数据结构DataFrame.Series 集成时间序列功能 提供丰 ...
- 小白学 Python 数据分析(3):Pandas (二)数据结构 Series
在家为国家做贡献太无聊,不如跟我一起学点 Python 顺便问一下,你们都喜欢什么什么样的文章封面图,老用这一张感觉有点丑 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析( ...
- Pandas初体验之数据结构——Series和DataFrame
Pandas是为了解决数据分析任务而创建的,纳入了大量的库和标准数据模型,提供了高效地操作大型数据集所需的工具. 对于Pandas包,在Python中常见的导入方法如下: from pandas im ...
- pandas一些基本操作(DataFram和Series)_3
import pandas as pd;import numpy as np#通过一维数组创建Chinese = np.array([89,87,86])print(Chinese)print(pd. ...
- pandas一些基本操作(DataFram和Series)_2
import numpy as nparr1 = np.arange(32).reshape(8,4)print(arr1)arr1 = arr1.reshape(-1);print(arr1)arr ...
- pandas一些基本操作(DataFram和Series)_1
##生成一个一维数组import numpy as np;nb7 = np.arange(0,100,2);print(nb7)print("======================== ...
- 机器学习初入门02 - Pandas的基本操作
之前的numpy可以说是一个针对矩阵运算的库,这个Pandas可以说是一个实现数据处理的库,Pandas底层的许多函数正是基于numpy实现的 一.Pandas数据读取 1.pandas.read_c ...
- pandas(一)操作Series和DataFrame的基本功能
reindex:重新索引 pandas对象有一个重要的方法reindex,作用:创建一个适应新索引的新对象 以Series为例 >>> series_obj = Series([4. ...
随机推荐
- EXCEL表格链接SQLSEVER数据库
Sub 数据库连接() Set Cnn = CreateObject("ADODB.Connection") Set rs = CreateObject(" ...
- elasticsearch.net一个查询问题
.Query(q => q.Bool(b => b.Must(m => m.MultiMatch(t => t .Fields(f => f.Field(obj => ...
- PHP算法之IP 地址无效化
给你一个有效的 IPv4 地址 address,返回这个 IP 地址的无效化版本. 所谓无效化 IP 地址,其实就是用 "[.]" 代替了每个 ".". 示例 ...
- Java 局部变量
Java 局部变量 局部变量声明在方法.构造方法或者语句块中: 局部变量在方法.构造方法.或者语句块被执行的时候创建,当它们执行完成后,变量将会被销毁: 访问修饰符不能用于局部变量: 局部变量只在声明 ...
- python_django_models模块中的查询
查询集:表示从数据库获取的对象集合,查询集可以有多个过滤器,过滤器就是一个函数(方法),基于所给参数限制查询集结果 从sql角度来说,查询集和select等价,过滤器和where等价 查询集特点: 惰 ...
- Redhat镜像-RHEL-官方镜像下载大全
原网站内容链接:https://pan.baidu.com/s/12XYXh#list/path=%2F 已经存在自己的云盘上了
- Java Collection - ArrayList & LinkedList
总结 ref: https://blog.csdn.net/qq_32679815/article/details/78907437 1-ArrayList是实现了基于动态数组的数据结构,Linked ...
- 17个方法防止dedeCMS织梦网站被黑挂木马
dede织梦cms系统的程序存在漏洞,黑客攻击方法层出不穷,导致网站经常被黑,被百度安全中心等拦截,影响排名和流量,让站长非常头疼,下面总结一些防止dede织梦cms系统被攻击设置的方法,可有效的防止 ...
- C/C++实现单向循环链表(尾指针,带头尾节点)
C语言实现单向循环链表,主要功能为空链表创建,链表初始化(头插法,尾插法),链表元素读取,按位置插入,(有序链表)按值插入,按位置删除,按值删除,清空链表,销毁链表. 单向循环链表和单向链表的区别:( ...
- idea从github中pull或者push成功之后ssm项目全部controller报红色下划线的解决方案
某次从github上pull下来之后,报出如下一堆红色波浪线错误 解决方法: 在随便一个红色波浪线处,按下alt+enter,点击add maven dependency, 选中所有,点击添加即可,此 ...