Chapter 6 排序

1-   直接插入排序 O(n2) O(1)

2-   折半插入排序 O(n2) O(1)

适合关键字较多

3-   希尔排序O(nlogn) O(1)

又名,缩小增量排序

4-   冒泡排序O(n2) O(1)

一趟排序后一个关键字到达最终位置

5-   快速排序O(nlogn) O(nlogn)栈

一趟排序后一个关键字到达最终位置

设置一个枢轴,待排序序列越接近无序效率越高

6-   简单选择排序O(n2) O(1)

一趟排序后一个关键字到达最终位置,与初始序列无关。

7-   堆排序O(nlogn) O(1)

可以看成一棵完全二叉树。适合关键字很多,e.g.从10000个挑10个最小的

8-   二路归并排序O(nlogn) O(n)

与初始序列无关

9-   基数排序O(d(n+rd)) O(rd)

高位有序,低位有序

总结:

1   时间复杂度

“快些以nlogn的速度归队”(快排,希尔,归并,堆)

2   空间复杂度

快排O(nlogn)

归并O(n)

基数O(rd

3   容易插   直接插入

起的好   冒泡

(都是O(n),有序)

4   稳定性:考研情绪不稳定,快些选一堆好友聊聊天(快排,希尔,简选,堆)

5   1)一趟排序能保证一个关键字到达最终位置   交换类(2)/选择类(2)

2)关键字比较次数和原始序列无关 ---- 简选,折半

3)排序趟数和原始序列无关 ---- 交换类(2)

直接插入 – 顺序查找

折半插入 – 折半查找

6   内部排序算法应用:

1)n较小:直接插入/简选

2)基本有序:直接插入/冒泡

3)n较大:选择O(nlogn)的“快些归队”

4)n很大:关键字位数较少可分解:基数排序

Chapter 6 排序的更多相关文章

  1. Chapter 9 (排序)

    1.排序算法: //****************************Sort.h******************************************** #ifndef SOR ...

  2. 《算法导论》 — Chapter 7 高速排序

    序 高速排序(QuickSort)也是一种排序算法,对包括n个数组的输入数组.最坏情况执行时间为O(n^2). 尽管这个最坏情况执行时间比較差.可是高速排序一般是用于排序的最佳有用选择.这是由于其平均 ...

  3. MySQL Crash Course #03# Chapter 5. 6 排序. BETWEEN. IS NULL

    索引 排序检索的数据 SQL 过滤 vs. 应用程序过滤 简单 Where 补充:大小写敏感. BETWEEN. IS NULL Sorting Retrieved Data mysql> SE ...

  4. 《算法导论》 — Chapter 8 线性时间排序

    序 到目前为止,关于排序的问题,前面已经介绍了很多,从插入排序.合并排序.堆排序以及快速排序,每一种都有其适用的情况,在时间和空间复杂度上各有优势.它们都有一个相同的特点,以上所有排序的结果序列,各个 ...

  5. Chapter 5. Label and Entry Widgets 标签和输入部件

    Chapter 5. Label and Entry Widgets  标签和输入部件 有时候,你需要用户输入特定的信息,比如他们的名字,地址或者 甚至序号. 简单的方式来实现这个是使用Enry 部件 ...

  6. 利用ArrayList对Hashtable其进行排序

    前言: 最近在使用Hashtable的时候发现一个问题:就是当你对Hashtable进行遍历的时候整个输出结果是毫无顺序的, 上网查了一下说是Hashtable有自己内部的排序机制,如果要自定义排序的 ...

  7. Chapter 1 Securing Your Server and Network(8):停止未使用的服务

    原文:Chapter 1 Securing Your Server and Network(8):停止未使用的服务 原文出处:http://blog.csdn.net/dba_huangzj/arti ...

  8. MVC 5 的 EF6 Code First 入门 系列:排序、筛选和分页

    这是微软官方SignalR 2.0教程Getting Started with Entity Framework 6 Code First using MVC 5 系列的翻译,这里是第三篇:排序.筛选 ...

  9. Java温故而知新-冒泡法排序

    冒泡法排序是各种初学者在学习数组与循环结构时都会练习的一种简单排序算法. 冒泡法的精髓在于比较相邻的两个元素,较大的元素会不断的排到队伍后面去,就像水里的泡泡一样不断向上跑. 想像一下倒在一个透明玻璃 ...

随机推荐

  1. c# 使用Expression 生成sql

    使用Expression 生成sql  update语句的时候遇到了个问题 ,Expression<Action<T>>  la   这个委托里面老获取不到 引用类型的值,甚至 ...

  2. ubuntu切换到root用户

    我们都知道使用su root命令,去切换到root权限,此时会提示输入密码,可是怎么也输不对,提示"Authentication failure", 解决办法如下 su root ...

  3. CF528E Triangles3000

    题意:给你一个不存在三线共交点的一次函数组a[i]x+b[i]y+c[i]=0. 问等概率选取三条直线,围成三角形的面积的期望. n<=3000. 标程: #include<bits/st ...

  4. thinkphp 获取内容

    如果需要获取渲染模板的输出内容而不是直接输出,可以使用fetch方法. fetch方法的用法和display基本一致(只是不需要指定输出编码和输出类型): 大理石平台规格 fetch('模板文件') ...

  5. 树形dp——cf1010D

    一个点的改变如果对根节点的值不会造成任何影响,那么这个点的所有子节点的改变也不会对根节点造成影响 因为每次只改一个叶子节点,也就是一条到根的路径,可以先预处理出初始情况下的每个结点的值 分别讨论根节点 ...

  6. MFC int转CString

    方法一. int iVar = 7489; char szBuf[100]; _itoa(iVar, szBuf, 10); CString ss(szBuf); SetDlgItemText(IDC ...

  7. JSP页面静态化总结之一使用URLRewrite实现url地址伪静态化

    JSP页面静态化总结之一使用URLRewrite实现url地址伪静态化 1使用URLRewrite实现url地址伪静态化1.1URLRewirte的用处 1.满足搜索引擎的要求. 2.隐藏技术实现,提 ...

  8. poj2407(欧拉函数模板)

    sqrt(n)复杂度 欧拉函数模板 #include <iostream> #include <cstdio> #include <queue> #include ...

  9. 【JZOJ3319】雪地踪迹

    description 森林里有一片长方形的草地,在清晨的大雪过后被一层厚厚的积雪所掩盖(下图左). 住在森林里的兔子和狐狸,穿越草地,都会在雪地上留下他们的踪迹.他们总是从左上角进入,并从右下角离开 ...

  10. Docker配置JDK1.8

    1.安装Docker(菜鸟教程有) https://www.runoob.com/docker/centos-docker-install.html 2.docker下载centos镜像(用作配置jd ...