ZR1050

http://www.zhengruioi.com/problem/1030

题目大意:

给定一棵带点权的树,求所有联通块的点权和的平方的和 \(n \le 10^5\)

题解

首先,关于平方的和或者和的平方我们一般都是考虑新加进来一个点会产生什么样的贡献

比如这一题,我们考虑合并两个集合的代价会发生什么样的变化

首先,设\(a,b\)分别为合并的两个集合的点权和

那么由$a^2 \(变为\)(a + b) ^ 2$的区别是代价多了个\(2ab\)和\(b^2\)

也就是说我们在DP的过程中需要维护所有联通块的点权和进行转移

接下,直接暴力计算是不可以的,我们需要对所有的联通块统一计算,发现对于合并每一对联通块的代价都是上面的东西

乘法分配律之后

我们发现还要额外记录当前点为根的联通块个数

设\(f_i\)表示以\(i\)点为根的联通块的个数

设\(g_i\)表示\(i\)点为根的所有联通块的点权和

设\(h_i\)表示以\(i\)点为根的所有联通块的点权和的平方的和

那么首先根据上面,我们在树形DP的时候可以合并两个联通块

\[h_x = (h_x + g_x\times f_y + 2\times g _x\times g_y+g_y\times f_x)
\]

首先本来原有的联通块的代价肯定是要保留,另外,对于\(h_x\)可以被合并\(f_y\)次,同理\(h_y\)会被合并\(f_y\)次

最后由于\(g\)数组记录的本来就是总贡献,因此直接合并即可

同理我们可以得到\(g\)的转移

\[g_x = (g_x + g_x\times f_y +g_y\times f_x)
\]

最后更新答案即可

总结

对于这种和联通块有关的题目一般可以通过单独算贡献或者DP的方式解决

特别是和平方相关的,要考虑新加进来的数的贡献

代码

#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#include<set>
#include<map>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const int N = 2e5 + 3;
const LL mod = 998244353;
int n;
LL w[N];
LL f[N],g[N],h[N];
vector <int> G[N];
inline int read(){
int v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
inline void dfs(int x,int fa){//h:平方的和
f[x] = 1;g[x] = w[x];
h[x] = w[x] * w[x] % mod;
for(int i = 0;i < (int)G[x].size();++i){
int y = G[x][i];
if(y == fa) continue;
dfs(y,x);
h[x] = (h[x] + h[x] * f[y] % mod + 2 * g[x] * g[y] % mod + h[y] * f[x] % mod) % mod;
g[x] = (g[x] + g[x] * f[y] + g[y] * f[x]) % mod;
f[x] = (f[x] + f[x] * f[y]) % mod;
}
}
int main(){
n = read();
for(int i = 1;i <= n;++i) w[i] = read();
for(int i = 1;i < n;++i){
int x = read(),y = read();
G[x].push_back(y);
G[y].push_back(x);
}
dfs(1,0);
LL ans = 0;
for(int i = 1;i <= n;++i) ans = (ans + h[i]) % mod;
cout << ans;
return 0;
}

ZR1050的更多相关文章

随机推荐

  1. DAY1-作业

    Python-day1-------> 本节内容: Python介绍 发展史 Python 2 or 3? 安装 Hello World程序 变量 用户输入 模块初识 .pyc是个什么鬼? 数据 ...

  2. 【转载】获取更多/proc/fd中有关socket的信息

    Q: Looking in /proc/$mypid/fd/, I see these files lrwx------ cm_user cm_user Oct : -> /dev/pts/ ( ...

  3. JavaScript--时间日期格式化封装

    这是一个正常的封装: 其他非正常的请按照以下语句自由搭配 <!DOCTYPE html> <html lang="en"> <head> < ...

  4. CSS面试题总结2(转)

    1.你最喜欢的图片替换方法是什么,你如何选择使用. 图像替代,就是像我们在平时将文本添加到文本中,然后通过css隐藏文本并在它的位置上显示一个背景图片,这样,搜索引擎仍然可以搜到HTML文本,即使我们 ...

  5. 如何编写go代码

    go是一种静态编译型的语言,它的编译速度非常快. go的官方编译器称为gc,包括编译工具5g,6g和8g,连接工具5l,6l和8l.其中的数字表示处理器的架构.我们不必关心如何挑选这些工具,因为go提 ...

  6. @bzoj - 4298@ [ONTAK2015]Bajtocja

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定d张无向图,每张图都有n个点.一开始,在任何一张图中都没有任 ...

  7. sn图书spider

    # -*- coding: utf-8 -*-import scrapyfrom copy import deepcopy class SnbookSpider(scrapy.Spider): nam ...

  8. C# 从零开始写 SharpDx 应用 画三角

    原文:C# 从零开始写 SharpDx 应用 画三角 版权声明:博客已迁移到 https://blog.lindexi.com 欢迎访问.如果当前博客图片看不到,请到 https://blog.lin ...

  9. 一个 PHP 面试题

    一个 PHP 面试题 $i = 0; $j =1; if ($i = 5 || ($j =6)) {echo $i,$j++;} 拿来当面试题不错. 实际并不会这样用,但这个题可以考基础.

  10. EF ObjectStateManager无法跟踪具有相同键的多个对象 标签: EasyUIc# 2015-09-05 11:01 1181人阅读

    最近做一个项目,因为是重构,好多代码是搬过来的,但是因为框架不同,所以搬过来也出现了很多问题,前几天在调试的时候,就碰到一个EF框架经常出现的问题:ObjectStateManager中已存在具有同一 ...