Codeforces Round #579 (Div. 3) 题解
比赛链接:https://codeforc.es/contest/1203/
A. Circle of Students
题意:\(T\)组询问,每组询问给出\(n\)个数字,问这\(n\)个数字能否围成圆环。(围成圆环指,从某一位开始顺时针或逆时针遍历,数组为\(1, 2, 3, ..., n\))
分析:把数组复制一份,两个数组首尾相接,正反判定两次即可。
AC代码:
#include<bits/stdc++.h>
#define SIZE 200010
#define rep(i, a, b) for(int i = a; i <= b; ++i)
using namespace std;
typedef long long ll;
void io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
ll n, m, k, t, a[SIZE];
int main() {
io(); cin >> t;
while (t--) {
cin >> n;
bool flag = true;
rep(i, 1, n) cin >> a[i];
rep(i, n + 1, n + n) a[i] = a[i - n];
rep(i, 1, n) {
if (a[i] == 1) {
ll cnt = 1;
rep(j, i + 1, i + n - 1) {
if (++cnt != a[j]) {
flag = false;
break;
}
}
}
}
if (flag) cout << "YES\n";
else {
flag = true;
rep(i, 1, n / 2) swap(a[i], a[n - i + 1]);
rep(i, n + 1, n + n) a[i] = a[i - n];
rep(i, 1, n) {
if (a[i] == 1) {
ll cnt = 1;
rep(j, i + 1, i + n - 1) {
if (++cnt != a[j]) {
flag = false;
break;
}
}
}
}
if (flag) cout << "YES\n";
else cout << "NO\n";
}
}
}
B. Equal Rectangles
题意:\(q\)组输入,每组输入给出一个整数\(n\),然后输入\(4n\)个整数。判断这些数字能否构成\(n\)个面积相同的矩形。
分析:先确定矩形的面积,显然应该是这些整数中的最小值乘最大值。然后我们对这些数排序,每次从首尾分别取两个数字判断是否构成矩形,面积是否相等即可。
AC代码:
#include<bits/stdc++.h>
#define SIZE 200010
#define rep(i, a, b) for(int i = a; i <= b; ++i)
using namespace std;
void io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
int a[SIZE], n, t;
int main(){
io(); cin >> t;
while(t--) {
cin >> n;
rep (i, 1, 4 * n) cin >> a[i];
sort(a + 1, a + 4 * n + 1);
bool flag = true;
int L = 1, R = 4 * n;
int s = a[L] * a[R];
while(L < R){
if(a[L] != a[L + 1] || a[R] != a[R - 1]) { flag = false; break; }
else if(s != a[L] * a[R]) { flag = false; break; }
L += 2, R -= 2;
}
if (flag) cout << "YES\n";
else cout << "NO\n";
}
}
C. Common Divisors
题意:给出\(n\)个正整数,找出能整除这\(n\)个数的正整数个数。
分析:即求最大公因数的因子个数。
AC代码:
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define SIZE 500010
#define rep(i, a, b) for(long long i = a; i <= b; ++i)
using namespace std;
typedef long long ll;
void io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
ll n, m, k, t, cnt = 0, a[SIZE];
int main() {
io(); cin >> n;
ll minx = 1e15;
rep(i, 1, n) {
cin >> a[i];
minx = min(minx, a[i]);
if (a[i] == 1) { cout << 1; return 0; }
}
rep(i, 1, n) {
if (a[i] % minx == 0) continue;
else minx = __gcd(minx, a[i]);
}
rep(i, 1, sqrt(minx)) {
if (minx % i == 0) {
if (i * i != minx)cnt += 2;
else cnt++;
}
}
cout << cnt;
}
D2. Remove the Substring (hard version)
题意:给定两个字符串\(s\)和\(t\),求一个最大的长度\(n\),使得在字符串\(s\)中删除连续\(n\)个字符后\(t\)仍然可以为\(s\)的子串。
分析:我们考虑下面这个样例:
\(asxxxxasdxxxd\)
\(asd\)
可以发现我们删除的最大连续\(n\)个字符有两种情况,一种是从头或尾开始删(像CF给出的样例),另一种就是上面这样删除中间的字符。因此,我们考虑用\(t\)串去和\(s\)串匹配,记录前缀和和后缀和,在所有前缀和\(+\)后缀和\(=\) \(t\)串长度的情况中找到最大值。
AC代码:
#include<bits/stdc++.h>
#define SIZE 500010
#define rep(i, a, b) for(long long i = a; i <= b; ++i)
using namespace std;
typedef long long ll;
void io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
char s1[SIZE], s2[SIZE];
int pre[SIZE], post[SIZE], cnt, len1, len2, ans = 0;
int main() {
io(); cin >> (s1 + 1) >> (s2 + 1);
len1 = strlen(s1 + 1), len2 = strlen(s2 + 1);
for (int i = 1, j = 1; i <= len2; ++i) {
while (s1[j] != s2[i]) ++j;
pre[i] = j++;
}
for (int i = len2, j = len1; i; --i) {
while (s1[j] != s2[i]) --j;
post[i] = j--;
}
ans = max(len1 - pre[len2], post[1] - 1);
rep(i, 1, len2 - 1) ans = max(ans, post[i + 1] - pre[i] - 1);
cout << ans;
}
E. Boxers
题意:有\(n\)个拳击手,给出他们的体重\(a_i\),每个拳击手的体重可以加\(1\)或减\(1\)(体重必须是正整数),询问最多能选出几个体重不同的拳击手。
分析:由于数据很小,用一个布尔数组保存所有可能的体重取值,然后贪心。
AC代码:
#include<bits/stdc++.h>
#define SIZE 500010
#define rep(i, a, b) for(long long i = a; i <= b; ++i)
using namespace std;
typedef long long ll;
void io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
ll n, m, k, t, x, num[SIZE];
bool a[SIZE];
int main() {
io(); cin >> n;
rep(i, 1, n) {
cin >> x;
a[x] = true;
num[x]++;
}
if (a[1]) a[2] = true;
rep(i, 2, 150001)
if (a[i])
a[i - 1] = a[i + 1] = true;
int cnt = 0;
rep(i, 1, 150000 + 1) {
if (a[i]) {
if (num[i - 1]) { num[i - 1]--; cnt++; }
else if(num[i]) { num[i]--; cnt++; }
else if (num[i + 1]) { num[i + 1]--; cnt++; }
}
}
cout << cnt;
}
F1. Complete the Projects (easy version)
题意:给定\(n\)个项目,和一个初始权值\(r\)。每个项目有两个数值构成,\(a\)表示要进行这个项目的最低权值需求,\(b\)表示进行完这个项目后权值将会变化的数值。询问能否完成所有的项目。
分析:首先我们肯定先做权值变化为正的项目,然后再做变化为负的项目。对于变化为正的项目,我们以\(a\)为关键字排序,对于变化为负的项目,我们以\(a+b\)为关键字排序。下证为什么以\(a+b\)为关键字排序:
我们考虑两项工作\(A_1\)和\(A_2\),如果排序时\(A_1\)在前,则有$$a_1 \leq r$$ $$a_2 \leq r+b_1$$
同理,对于\(A_2\)在前时有$$a_2 \leq r$$ $$a_1 \leq r+b_2$$
转化为$$max(a_1, a_2-b_1) \leq r$$ $$max(a_2, a_1-b_2) \leq r$$
由于我们需要让\(A_1\)在前时更优,于是有\(max(a_1, a_2-b_1) \leq max(a_2, a_1-b_2)\)。分析后得到这个式子等价于\(a_2+b_2 \leq a_1+b_1\)
AC代码:
#include <bits/stdc++.h>
#define SIZE 200010
#define rep(i, a, b) for(int i = a; i <= b; ++i)
using namespace std;
typedef long long ll;
ll n, r, x, y;
void io() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
}
struct node {
ll a, b;
}p1[SIZE], p2[SIZE], tp;
bool cmp1(node a, node b) {
return a.a < b.a;
}
bool cmp2(node a, node b) {
return a.a + a.b > b.a + b.b;
}
int main(){
io(); cin >> n >> r;
int j = 1, k = 1;
rep (i, 1, n) {
cin >> tp.a >> tp.b;
if (tp.b >= 0) p1[j++] = tp;
else p2[k++] = tp;
}
sort(p1 + 1, p1 + j, cmp1);
rep (i, 1, j - 1) {
if (r < p1[i].a) { cout << "NO"; return 0; }
else r += p1[i].b;
}
sort(p2 + 1, p2 + k, cmp2);
rep (i, 1, k - 1) {
if (r < p2[i].a) { cout << "NO"; return 0; }
else r += p2[i].b;
}
if (r >= 0) cout << "YES";
else cout << "NO";
}
F2. Complete the Projects (hard version):
题意:和easy version基本一样,就是询问变成了最多能做几个项目。
分析:先排序贪心,然后取负数项目时dp。
AC代码:
#include <bits/stdc++.h>
#define SIZE 200010
#define rep(i, a, b) for(long long i = a; i <= b; ++i)
using namespace std;
typedef long long ll;
void io() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
}
int n, r;
struct node {
ll a, b;
}p1[SIZE], p2[SIZE], tp;
bool cmp1(node a, node b) {
return a.a < b.a;
}
bool cmp2(node a, node b) {
return a.a + a.b < b.a + b.b;
}
int main() {
io(); cin >> n >> r;
int j = 1, k = 1, cnt = 0;
rep(i, 1, n) {
cin >> tp.a >> tp.b;
if (tp.b >= 0) p1[j++] = tp;
else p2[k++] = tp;
}
sort(p1 + 1, p1 + j, cmp1);
rep(i, 1, j - 1) {
if (r < p1[i].a) { continue; }
else r += p1[i].b;
cnt++;
}
sort(p2 + 1, p2 + k, cmp2);
vector<int> dp(r + 1);
rep(i, 1, k - 1) {
for (int j = r; j >= max(p2[i].a, abs(p2[i].b)); --j) {
dp[j] = max(dp[j], dp[j + p2[i].b] + 1);
}
}
cout << cnt + dp[r];
}
Codeforces Round #579 (Div. 3) 题解的更多相关文章
- Codeforces Round #182 (Div. 1)题解【ABCD】
Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...
- Codeforces Round #608 (Div. 2) 题解
目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...
- Codeforces Round #579 (Div. 3)
Codeforces Round #579 (Div. 3) 传送门 A. Circle of Students 这题我是直接把正序.逆序的两种放在数组里面直接判断. Code #include &l ...
- Codeforces Round #525 (Div. 2)题解
Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...
- Codeforces Round #528 (Div. 2)题解
Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...
- Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F
Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...
- Codeforces Round #677 (Div. 3) 题解
Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...
- Codeforces Round #665 (Div. 2) 题解
Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...
- Codeforces Round #160 (Div. 1) 题解【ABCD】
Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...
随机推荐
- lnmp1.5一键安装包安装lnmpa后,添加站点
lnmp1.5一键安装包安装lnmpa后,添加站点 (1)添加站点 (2)配置apache配置文件 在/usr/local/apache/conf/vhost文件夹下,修改webApp站点配置文件ap ...
- MySQL 分组并多行拼接 group_concat 用法
数据源 user name age 小红 18 小明 18 小芳 19 ------------------------------------------------------------ ...
- Jmeter录制https协议不能跳转成功(证书导入)
原文: http://www.cnblogs.com/Lam7/p/7154120.html 录制脚本的时候,比如录制https协议的百度网站 https://www.baidu.com ,所有录制 ...
- C语言中各数据类型(eg.int和float的区别)
- .htaccess详解
http://www.cnblogs.com/adforce/archive/2012/11/23/2784664.html .htaccess是什么 .htaccess文件(或者"分布式配 ...
- layer iframe 设置关闭按钮 和刷新和弹出框设置
layer弹出层的关闭问题 就是在执行添加或修改的时候,需要将数据提交到后台进行处理,这时候添加成功之后最理想的状态是关闭弹出层并且刷新列表的数据信息,之前一直想实现这样,可一直没有成功,今天决定 ...
- [NOI2014] 魔法森林 - Link Cut Tree
[NOI2014] 魔法森林 Description 给定一张图,每条边 \(i\) 的权为 \((a_i,b_i)\), 求一条 \(1 \sim n\) 路径,最小化 \(\max_{i\in P ...
- mediasoup-demo解析-客户端
1.gulp任务管理 app官方文档 npm start启动app,执行脚本: "start": "gulp live" 该命令用启动gulp顺序任务组合liv ...
- 优酷1080p的kux格式文件转码
@echo off for /r . %%i in (*.kux) do ( "C:\Program Files (x86)\YouKu\YoukuClient\nplayer\ffmpeg ...
- HTML链接标签
<a>超链接标签:常用属性: href:指定地址,要有HTTP协议.如果是本网站的html文件可以写路径 target:以什么方式打开 _self:在当前窗口打开(默认) _blank:新 ...