题意

http://codeforces.com/contest/1189/problem/D2


思考

显然地,如果出现度数为2且两条出边边权不相同的情况,是无法构造合法方案的。

下面考虑缩边后的树,此时每个非叶子节点的度数一定大于等于3。

枚举每个非叶子节点,将其重新作为树的根,并尝试将它所有的出边都达到要求。我们先找到它代表的所有叶子,分两种情况考虑:

1.一条边以下只有一个叶子。如下图所示,红色的路径代表+w/2,w为该边的边权,蓝色路径代表-w/2,能达到平衡。

2.一条边以下不止一个叶子。如下图所示,我们要求选定边的子树中挑出的两个叶子的lca的深度必须最大,否则无法消除影响。此处可以挑选dfn最大和最小的那两个。

总复杂度O(n^2)。注意特判一条链的情况。


代码

 #include<bits/stdc++.h>
using namespace std;
const int maxn=2E3+;
int n;
int deg[maxn*],hh[maxn];
int tot,haha;
bool dot[maxn];
vector<int>what[maxn];
vector<int>wait;
double w[maxn];
map<pair<int,int>,bool>vis;
inline pair<int,int>M(int x,int y)
{
if(x>y)
swap(x,y);
return make_pair(x,y);
}
struct edge
{
int to,next;
double w;
};
struct note
{
int x,y;
double d;
note(int a=,int b=,double c=)
{
x=a,y=b,d=c;
}
};
vector<note>ans;
struct graph
{
int head[maxn*],size;
edge E[maxn*];
inline void add(int u,int v,double w)
{
E[++size].to=v;
E[size].next=head[u];
E[size].w=w;
head[u]=size;
}
void get(int u,int F,int num)
{
for(int i=head[u];i;i=E[i].next)
{
int v=E[i].to;
if(v==F)
continue;
if(u==F)
{
w[++num]=E[i].w;
hh[num]=v;
get(v,u,num);
}
else
get(v,u,num);
}
if(deg[u]==)
what[num].push_back(u);
if(u==F)
for(int i=;i<=num;++i)
{
if(vis[M(u,hh[i])])
continue;
if(what[i].size()==)
{
int u1=what[i][];
int x=what[i+<=num?i+:i+-num][];
int y=what[i+<=num?i+:i+-num][];
double d=w[i]/;
ans.push_back(note(u1,x,d));
ans.push_back(note(u1,y,d));
ans.push_back(note(x,y,-d));
vis[M(u,hh[i])]=;
}
else
{
int u1=what[i][],u2=what[i][what[i].size()-];
int x=what[i+<=num?i+:i+-num][];
int y=what[i+<=num?i+:i+-num][];
double d=w[i]/;
ans.push_back(note(u1,x,d));
ans.push_back(note(u2,y,d));
ans.push_back(note(u1,u2,-d));
ans.push_back(note(x,y,-d));
vis[M(u,hh[i])]=;
}
}
}
void find(int u,int F,int last)
{
dot[u]=;
if(deg[u]!=)
{
haha=last;
wait.push_back(u);
return;
}
for(int i=head[u];i;i=E[i].next)
{
int v=E[i].to;
if(v==F)
continue;
if(last==)
{
find(v,u,E[i].w);
last=E[i].w;
}
else if(last==E[i].w)
find(v,u,E[i].w);
else
{
cout<<"NO"<<endl;
exit();
}
}
}
int sum;
void getsize(int u,int F)
{
++sum;
for(int i=head[u];i;i=E[i].next)
{
int v=E[i].to;
if(v==F)
continue;
getsize(v,u);
}
}
}source,G;
int main()
{
ios::sync_with_stdio(false);
cin>>n;
for(int i=;i<=n;++i)
{
int x,y;
double z;
cin>>x>>y>>z;
source.add(x,y,z);
source.add(y,x,z);
++deg[x],++deg[y];
}
int P1=,P2=;
for(int u=;u<=n;++u)
{
if(deg[u]==)
{
if(!dot[u])
{
source.find(u,u,);
wait.clear();
G.add(wait[],wait[],haha);
G.add(wait[],wait[],haha);
P1=wait[],P2=wait[];
}
continue;
}
for(int i=source.head[u];i;i=source.E[i].next)
{
int v=source.E[i].to;
haha=source.E[i].w;
if(deg[v]!=)
G.add(u,v,source.E[i].w);
}
}
cout<<"YES"<<endl;
G.getsize(P1,P1);
if(G.sum==)
{
cout<<<<endl;
cout<<P1<<" "<<P2<<" "<<haha<<endl;
return ;
}
for(int u=;u<=n;++u)
{
if(deg[u]==)
continue;
for(int i=;i<=n;++i)
what[i].clear();
G.get(u,u,);
}
int del=;
for(int i=;i<ans.size();++i)
if(abs(ans[i].d-)<=0.01)
++del;
cout<<ans.size()-del<<endl;
for(int i=;i<ans.size();++i)
if(abs(ans[i].d-)>0.01)
cout<<ans[i].x<<" "<<ans[i].y<<" "<<ans[i].d<<endl;
return ;
}

CF572_Div2_D2的更多相关文章

随机推荐

  1. 【Linux】tar压缩解压缩笔记

    tar -c, --create create a new archive(建立压缩档案) -x, --extract, --get extract files from an archive(解压) ...

  2. Wannafly挑战赛25 因子 [数论]

    一.题意 令 X = n!, 给定一大于1的正整数p 求一个k使得 p ^k | X 并且 p ^(k + 1) 不是X的因子 输入为两个数n, p (1e18>= n>= 10000 & ...

  3. mac系统Docker安装Redis教程

    在之前介绍过mac系统安装docker,以及docker安装mysql的傻瓜式教程,如果有需要参考的朋友,可以看下面文章: MacOS安装Docker傻瓜式教程 mac系统下docker安装配置mys ...

  4. 【转载】你未必知道的49个CSS知识点

    原文链接: https://juejin.im/post/5d3eca78e51d4561cb5dde12 虽然大多数我都会,嘻嘻.不过案例太生动了,值得收藏.

  5. $Poj3585\ Accumulation Degree$ 树形$DP/$二次扫描与换根法

    Poj Description 有一个树形的水系,由n-1条河道与n个交叉点组成.每条河道有一个容量,联结x与y的河道容量记为c(x,y),河道的单位时间水量不能超过它的容量.有一个结点是整个水系的发 ...

  6. MySQL 核心三剑客 —— 索引、锁、事务

    一.常见存储引擎 1.1 InnoDB InnoDB 是 MySQL 5.5 之后默认的存储引擎,它具有高可靠.高性能的特点,主要具备以下优势: DML 操作完全遵循 ACID 模型,支持事务,支持崩 ...

  7. 初入webpack

    为什么需要构建工具? 通过caniuse我们了解到 现代浏览器对es6特性的支持程度: 由于现代浏览器对es6特性的支持度并不能说太高,为了兼容所以需要进行 es6语法的转换,除了此,三大框架的语法特 ...

  8. Linux Centos7 环境搭建Docker部署Zookeeper分布式集群服务实战

    Zookeeper完全分布式集群服务 准备好3台服务器: [x]A-> centos-helios:192.168.19.1 [x]B-> centos-hestia:192.168.19 ...

  9. 「洛谷P1262」间谍网络 解题报告

    P1262 间谍网络 题目描述 由于外国间谍的大量渗入,国家安全正处于高度的危机之中.如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B.有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意 ...

  10. javascript-void keyword

    javascript-void keyword 写在前面 ECMA-262定义了ECMAScript所支持的关键字(keyword),关键字不能用作ECMAScript程序的标识符(Indetifie ...