Sobel边缘检测算法
索贝尔算子(Sobel operator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量
Sobel卷积因子为:

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下:

具体计算如下:
Gx = (-1)*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1)
+(-2)*f(x-1,y) + 0*f(x,y)+2*f(x+1,y)
+(-1)*f(x-1,y+1) + 0*f(x,y+1) + 1*f(x+1,y+1)
= [f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2*f(x-1,y)+f(x-1,y+1)]
Gy =1* f(x-1, y-1) + 2*f(x,y-1)+ 1*f(x+1,y-1)
+0*f(x-1,y) 0*f(x,y) + 0*f(x+1,y)
+(-1)*f(x-1,y+1) + (-2)*f(x,y+1) + (-1)*f(x+1, y+1)
= [f(x-1,y-1) + 2f(x,y-1) + f(x+1,y-1)]-[f(x-1, y+1) + 2*f(x,y+1)+f(x+1,y+1)]
其中f(a,b), 表示图像(a,b)点的灰度值;
图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小:

通常,为了提高效率 使用不开平方的近似值:

如果梯度G大于某一阀值 则认为该点(x,y)为边缘点。
然后可用以下公式计算梯度方向:

Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。
附带知识:
普利维特算子(Prewitt operate):
除sobel边缘检测外 还有Prewitt算子, 它的卷积因子如下:

其他计算 和sobel差不多;
Prewitt算子利用像素点上下、左右邻点灰度差,在边缘处达到极值检测边缘。对噪声具有平滑作用,定位精度不够高。
罗伯茨交叉边缘检测(Roberts Cross operator)
卷积因子如下:

灰度公式为:

近似公式为:

具体计算如下:
G(x,y)=abs(f(x,y)-f(x+1,y+1))+abs(f(x,y+1)-f(x+1,y))
灰度方向 计算公式为:

Roberts算子采用对角线方向相邻两像素之差近似梯度幅值检测边缘。检测水平和垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感
Sobel边缘检测算法的更多相关文章
- 基于MATLAB的Sobel边缘检测算法实现
图像边缘就是图像灰度值突变的地方,也就是图像在该部分的像素值变化速度非常之快,就比如在坐标轴上一条曲线有刚开始的平滑突然来个大转弯,在变化出的导数非常大. Sobel算子主要用作边缘检测,它是一离散型 ...
- Sobel边缘检测算法(转载)
转载请注明出处: http://blog.csdn.net/tianhai110 索贝尔算子(Sobel operator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰 ...
- 基于Vivado HLS在zedboard中的Sobel滤波算法实现
基于Vivado HLS在zedboard中的Sobel滤波算法实现 平台:zedboard + Webcam 工具:g++4.6 + VIVADO HLS + XILINX EDK + ...
- 基于FPGA的Sobel边缘检测的实现
前面我们实现了使用PC端上位机串口发送图像数据到VGA显示,通过MATLAB处理的图像数据直接是灰度图像,后面我们在此基础上修改,从而实现,基于FPGA的动态图片的Sobel边缘检测.中值滤波.Can ...
- 【算法随记】Canny边缘检测算法实现和优化分析。
以前的博文大部分都写的非常详细,有很多分析过程,不过写起来确实很累人,一般一篇好的文章要整理个三四天,但是,时间越来越紧张,后续的一些算法可能就以随记的方式,把实现过程的一些比较容易出错和有价值的细节 ...
- 【转】基于FPGA的Sobel边缘检测的实现
前面我们实现了使用PC端上位机串口发送图像数据到VGA显示,通过MATLAB处理的图像数据直接是灰度图像,后面我们在此基础上修改,从而实现,基于FPGA的动态图片的Sobel边缘检测.中值滤波.Can ...
- 图像特征提取:Sobel边缘检测
前言 点和线是做图像分析时两个最重要的特征,而线条往往反映了物体的轮廓,对图像中边缘线的检测是图像分割与特征提取的基础.文章主要讨论两个实际工程中常用的边缘检测算法:Sobel边缘检测和Canny边缘 ...
- OpenCV: Canny边缘检测算法原理及其VC实现详解(转载)
原文地址:http://blog.csdn.net/likezhaobin/article/details/6892176 原文地址:http://blog.csdn.net/likezhaobin/ ...
- 数字图像处理之sobel边缘检测
在前两部文章介绍了几种边缘检测算法,和位图的内存结构.如果对前两篇文章已经理解透彻 了,那么本文将带你进入数字图像处理的世界. 本文通过C代码实现基本的sobel边缘检测,包括8个方向和垂直方向: 代 ...
随机推荐
- 【JavaScript】JS总结 – 乱
一. 重要:js中的function函数声明.函数表达式 // 函数声明 // Ex: 会在代码执行之前提前加载到作用域中,即js解析器会优先读取,确保在所有代码执行之前声明已经被解析:所以可以在定义 ...
- 在Visual Studio中将dll以资源的形式嵌入exe中
一.Dll的优点: 1.扩展应用程序的特性 2.简化项目管理 3.有助于节省内存 4.促进资源的共享 5.促进本地化 6.有助于解决平台间的差异 7.可用于特殊目的 有关于dll及注入相关理论资料,可 ...
- 二叉堆(2)LeftistHeap
左倾堆,用于堆的快速合并. 规则: ① 节点的键值小于或等于它的左右子节点的键值. ② 节点的左孩子的NPL >= 右孩子的NPL. ③ 节点的NPL = 它的右孩子的NPL + 1. 测试文件 ...
- MySQL启动失败故障思路
1.1 查看 日志 默认路径在数据路径下,以当前主机名加上.err命名 如主机名为tz,数据路径为/mnt/mysql_data目录下 日志文件为tz.err [root@tz mysql_data] ...
- CentOS 安装后的常用配置
镜像配置 CentOS系统的镜像配置文件路径在 /etc/yum.repos.d/CentOS-Base.repo, 将镜像内容copy到 CentOS-Base.repo中 然后运行 yum mak ...
- LaTeX技巧006:使用pdfLaTeX时,添加PDF文件属性的方法
PDF文件中含有标题.主题.作者.关键字等属性.这些属性,在Acrobat Reader或者Foxit Reader中可以通过”文件”菜单下的”属性”查看,在Acrobat Read中还可以使用Ctr ...
- 巴塞尔问题(Basel problem)的多种解法
巴塞尔问题(Basel problem)的多种解法——怎么计算\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots112+122+132+⋯ ? (PS:本 ...
- new SparkContext()发生错误java.lang.NoSuchMethodError: scala.Predef
参考:https://blog.csdn.net/weixin_40137479/article/details/80320324 new SparkContext(conf)发生错误: Except ...
- webpack 之使用vue
现在,我们希望在项目中使用vuejs,那么必然需要对其有所依赖,所以需要先就行安装 注:因为我们后续是在实际项目中也会使用vue的,所以并不是开发时依赖 npm install vue --save ...
- Ubuntu 安装交叉编译器出错问题
安装教程网上有很多,可参考:Ubuntu14.04(64位)下gcc-linaro-arm-linux-gnueabihf交叉编译环境搭建 但是我的问题一直是路径搭好了,就是找不到文件:反复查找,花了 ...