正解:欧拉函数

解题报告:

传送门$QwQ$

首先显然十分套路地变下形是趴

$\begin{align*}&=\sum_{i=1}^n\sum_{j=1}^n gcd(i,j)\\&=\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^{min(i,j)} [gcd(i,j)==d]\cdot d\\&=\sum_{d=1}^{n}d\cdot \sum_{i=1}^n\sum_{j=1}^n [gcd(i,j)==d]\\\end{align*}$

然后就欧拉函数做呗?直接戳我简要总结里常见套路第一条,就能$O(n)$做了$QwQ$

(说下昂,这题里其实是无序的,所以最后用$phi$的时候就可以直接$i\cdot \phi(i)$鸭$QwQ$

其实本来还有一种方法的但因为某不便透露的原因被删了$kk$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define fi first
#define sc second
#define gc getchar()
#define mp make_pair
#define int long long
#define P pair<int,int>
#define ri register int
#define rc register char
#define rb register bool
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define e(i,x) for(ri i=head[x];i;i=edge[i].nxt) const int N=+;
int n,phi[N],sum[N],pr[N],pr_cnt,as;
bool is_pr[N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void pre()
{
phi[]=;
rp(i,,N-)
{
if(!is_pr[i])pr[++pr_cnt]=i,phi[i]=i-;;sum[i]=sum[i-]+phi[i];
rp(j,,pr_cnt)
{
if(pr[j]*i>N-)break;;is_pr[pr[j]*i]=;
if(!(i%pr[j])){phi[i*pr[j]]=phi[i]*pr[j];break;}
phi[i*pr[j]]=phi[i]*phi[pr[j]];
}
}
} signed main()
{
//freopen("1390.in","r",stdin);freopen("1390.out","w",stdout);
pre();n=read();rp(i,,n/)as+=i*sum[n/i];
printf("%lld\n",as);
return ;
}

洛谷$P1390$ 公约数的和 欧拉函数的更多相关文章

  1. 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)

    洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...

  2. 洛谷P3601签到题(欧拉函数)

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  3. 【洛谷 UVA11417】 GCD(欧拉函数)

    我们枚举所有gcd \(k\),求所有\(gcd=k\)的数对,记作\(f(k)\),那么\(ans=\sum_{i=1}^{n}(f(i)-1)*i\).为什么减1呢,观察题目,发现\(j=i+1\ ...

  4. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  5. 洛谷P1170 兔八哥与猎人 欧拉函数的应用

    https://www.luogu.org/problem/P1170 #include<bits/stdc++.h> using namespace std; ],b[],c[],d[] ...

  6. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  7. 51nod1040 最大公约数之和,欧拉函数或积性函数

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...

  8. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  9. 51nod 1040最大公约数和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

随机推荐

  1. Twitter 宣布抛弃 Mesos,全面转向Kubernetes

    摘要: 从最早Mesos“代言人”到如今的全面转向“Kubernetes Native”,Twitter的举动再一次佐证了‘Kuberentes已经成为容器编排事实标准’这一断言. 本文作者:张磊 阿 ...

  2. C#中的?操作符

    一.1个?的用法 1. 表示可空数据类型,如 int? bool? 2. 跟在对象后,如该对象为null,则不会触发空值异常,且整个表达式返回null,如: string kk = "123 ...

  3. HTML5--语法

    一.标记方法 1.内容类型(ContentType)还是.text/html 2.声明:<!DOCTYPE html SYSTEM “about:legacy-compat”> 3.字符编 ...

  4. PHP中 spl_autoload_register() 函数用法

    这篇文章主要介绍了PHP中spl_autoload_register()函数用法,结合实例形式分析了__autoload函数及spl_autoload_register函数的相关使用技巧,需要的朋友可 ...

  5. HTML的基本结构和标签分类

    HTML:超文本标记语言 HTML基本结构 <!DOCTYPE html> <html> <head> <meta charset="utf-8&q ...

  6. MySQL数据库字符集和整理

    MySQL数据库字符集和整理(2009-11-20 22:23:37) mysql数据库 it    其实这个表在MySQL数据库中通过phpMyAdmin就能看到,icech只是把表格整理了一下方便 ...

  7. oracle merge into 新增或者修改

    merge into sn_balance b1 using(select 'admin' as userid,1 as type1 from dual) b2 on(b1.userid=b2.use ...

  8. H3C DCC的特点

  9. H3C PAP验证

  10. html手机端全屏显示和溢出问题

    <meta name="viewport" content="width=1200, initial-scale=0.3"> initial-sca ...