POJ 3666 Making the Grade (线性dp,离散化)
Making the Grade
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 1 Accepted Submission(s) : 1
A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).
You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is
|A1 - B1| + |A2 - B2| + ... + |AN - BN |
Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.
<i>N</i><br>* Lines 2..<i>N</i>+1: Line
<i>i</i>+1 contains a single integer elevation:
<i>A<sub>i</sub></i> </p>
cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing
in elevation.</p>
1
3
2
4
5
3
9
 
对于这个引理,简单地证明一下:
可以用数学归纳法证明。
假设b[1~k-1]都在a[]中出现过;
对于b[k],若a[k]>b[k-1],则b[k]=a[k]解最优;
若a[k]<b[k-1],则一定存在t,使b[t~k]变为a[k]的最优解;
或b[k]=b[k-1];
特殊地,对于1号位置,b[1]=a[1]必定为最优解。
综上,引理显然得证。
接下来进行dp

我们令dp[i][j]来表示前i个数中形成单调序列并且最后一个为j的 最小花费;那么因为最后一个数为j,所以之前的数必须小于j,所以(i,j)的花费 为min{dp[i][k]}+j-a[i];
所以状态转移方程为 dp[i][j]=min{dp[i][k]}+j-a[i];
还不知道怎么推
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 0x3f3f3f3f;
using namespace std;
int n;
int a[], num[], f[][];
int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
{
scanf("%d", &a[i]);
num[i] = a[i];
}
sort(num + , num + n + );
memset(f,0x3f3f3f3f, sizeof(f));
f[][] = ;
int tmp = ;
int i, j;
for (i = ; i <= n; i++)
{
tmp = f[i-][];
for (j = ; j <= n; j++)
{
tmp = min(tmp, f[i - ][j]);
f[i][j] = abs(num[j] - a[i]) + tmp;
}
}
int ans = inf;
for (i = ; i <= n; i++)
{
ans = min(ans, f[n][i]);
}
printf("%d\n", ans);
return ;
}
POJ 3666 Making the Grade (线性dp,离散化)的更多相关文章
- POJ - 3666   Making the Grade(dp+离散化)
		Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ... 
- poj 3666 Making the Grade(dp离散化)
		Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7068 Accepted: 3265 ... 
- Poj 3666 Making the Grade  (排序+dp)
		题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ... 
- poj3666/CF714E/hdu5256/BZOJ1367(???) Making the Grade[线性DP+离散化]
		给个$n<=2000$长度数列,可以把每个数改为另一个数代价是两数之差的绝对值.求把它改为单调不增or不减序列最小代价. 话说这题其实是一个结论题..找到结论应该就很好做了呢. 手玩的时候就有感 ... 
- POJ 3666 Making the Grade (DP)
		题意:输入N, 然后输入N个数,求最小的改动这些数使之成非严格递增即可,要是非严格递减,反过来再求一下就可以了. 析:并不会做,知道是DP,但就是不会,菜....d[i][j]表示前 i 个数中,最大 ... 
- POJ 3666  Making the Grade (DP滚动数组)
		题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ... 
- POJ 3666 Making the Grade【DP】
		读题堪忧啊,敲完了才发现理解错了..理解题必须看样例啊!! 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#pro ... 
- POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)
		传送门: http://poj.org/problem?id=3666 Making the Grade Time Limit: 1000MS Memory Limit: 65536K Total ... 
- poj 1050 To the Max(线性dp)
		题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ... 
随机推荐
- 软工作业No.6 甜美女孩第四周
			各成员在Alpha阶段认领的任务 成员 Alpha阶段认领的任务 整个项目预期的任务量 曾祎祺 安排每日任务,每晚总结 16% 邓画月 基础2048+自定义 16% 梁佩诗 负责界面 16% 何颖琪 ... 
- xitong
			回复 YAJE3 :http://msdn.anjieart.net/和http://msdn.ez58.net/files/windows%20vista同样是MSDN网站 msdnitellyou ... 
- L213
			The world lost seven astronauts of Space Shuttle Columbia(哥伦比亚号航天飞机) this month. It broughthome the ... 
- L211
			Violin prodigies (神童), I learned , have come in distinct waves from distinct regions . Most of the g ... 
- anu - controlledComponent
			/** input, select, textarea这几个元素如果指定了value/checked的**状态属性**,就会包装成受控组件或非受控组件 受控组件是指,用户除了为它指定**状态属性**, ... 
- 【设计模式】 模式PK:工厂模式VS建造者模式
			1.概述 工厂方法模式注重的是整体对象的创建方法,而建造者模式注重的是部件构建的过程,旨在通过一步一步地精确构造创建出一个复杂的对象.我们举个简单例子来说明两者的差异,如要制造一个超人,如果使用工厂方 ... 
- stm32  继电器的配置
			你可以把继电器当成一个led来控制,只不过就是电路图不一样,但配置原理是一样的, 控制相对应的GPIO口,推挽输出,就行了,然后仿真一下就会发现哒哒哒的声音. 
- ThinkPHP3.2.3整合smarty模板(三)
			在smarty模板中使用thinkphp框架的U方法时要主要的问题: 1.不能直接使用{:U('Index/index')}: 2.正确的使用方法为:<!--{U("Login/log ... 
- HDU 2544:最短路
			最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ... 
- Flask, Tornado, GEvent组合运行与性能比较
			我在选一个python的互联网框架, 本来已经定下来用Tornado了. 但我还听到很多人推荐Flask的简单性和灵活性, 还有gevent的高性能, 所以决定也试试它们以及它们和Tornado的结 ... 
