Making the Grade

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 1   Accepted Submission(s) : 1
Problem Description

A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

|A1 - B1| + |A2 - B2| + ... + |AN - BN |

Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

 
Input
<p>* Line 1: A single integer:
<i>N</i><br>* Lines 2..<i>N</i>+1: Line
<i>i</i>+1 contains a single integer elevation:
<i>A<sub>i</sub></i> </p>
 
Output
<p>* Line 1: A single integer that is the minimum
cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing
in elevation.</p>
 
Sample Input
7
1
3
2
4
5
3
9
 
Sample Output
3
 
Source
PKU
 
引理一下,记|Ai-Bi|的和为S,在S最小化前提下,一定存在一种构造序列B的方案,使B中的数值都在A中出现过。
然后很容易做了……
附lyd的讲解
 

对于这个引理,简单地证明一下:

可以用数学归纳法证明。

假设b[1~k-1]都在a[]中出现过;

对于b[k],若a[k]>b[k-1],则b[k]=a[k]解最优;

      若a[k]<b[k-1],则一定存在t,使b[t~k]变为a[k]的最优解;

             或b[k]=b[k-1];

特殊地,对于1号位置,b[1]=a[1]必定为最优解。

综上,引理显然得证。

接下来进行dp

我们令dp[i][j]来表示前i个数中形成单调序列并且最后一个为j的 最小花费;那么因为最后一个数为j,所以之前的数必须小于j,所以(i,j)的花费 为min{dp[i][k]}+j-a[i];

所以状态转移方程为   dp[i][j]=min{dp[i][k]}+j-a[i];

还不知道怎么推

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 0x3f3f3f3f;
using namespace std;
int n;
int a[], num[], f[][];
int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
{
scanf("%d", &a[i]);
num[i] = a[i];
}
sort(num + , num + n + );
memset(f,0x3f3f3f3f, sizeof(f));
f[][] = ;
int tmp = ;
int i, j;
for (i = ; i <= n; i++)
{
tmp = f[i-][];
for (j = ; j <= n; j++)
{
tmp = min(tmp, f[i - ][j]);
f[i][j] = abs(num[j] - a[i]) + tmp;
}
}
int ans = inf;
for (i = ; i <= n; i++)
{
ans = min(ans, f[n][i]);
}
printf("%d\n", ans);
return ;
}

POJ 3666 Making the Grade (线性dp,离散化)的更多相关文章

  1. POJ - 3666 Making the Grade(dp+离散化)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  2. poj 3666 Making the Grade(dp离散化)

    Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7068   Accepted: 3265 ...

  3. Poj 3666 Making the Grade (排序+dp)

    题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...

  4. poj3666/CF714E/hdu5256/BZOJ1367(???) Making the Grade[线性DP+离散化]

    给个$n<=2000$长度数列,可以把每个数改为另一个数代价是两数之差的绝对值.求把它改为单调不增or不减序列最小代价. 话说这题其实是一个结论题..找到结论应该就很好做了呢. 手玩的时候就有感 ...

  5. POJ 3666 Making the Grade (DP)

    题意:输入N, 然后输入N个数,求最小的改动这些数使之成非严格递增即可,要是非严格递减,反过来再求一下就可以了. 析:并不会做,知道是DP,但就是不会,菜....d[i][j]表示前 i 个数中,最大 ...

  6. POJ 3666 Making the Grade (DP滚动数组)

    题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...

  7. POJ 3666 Making the Grade【DP】

    读题堪忧啊,敲完了才发现理解错了..理解题必须看样例啊!! 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110495#pro ...

  8. POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)

    传送门: http://poj.org/problem?id=3666 Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total ...

  9. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

随机推荐

  1. 利用InstallShiled 10.5制作AE应用程序安装包

    [转]利用InstallShiled 10.5制作AE应用程序安装包 作者:3SNEWS 社区ESRI(ArcGIS)版版主:zhaoxiang_whuhttp://www.3snews.net/bb ...

  2. 将本地的一个新项目上传到GitHub上新建的仓库中去

    转载: 如何将本地的一个新项目上传到GitHub上新建的仓库中去 踩过的坑: 1.在git push时报错 error: RPC failed; curl 56 SSL read: error:000 ...

  3. ASI 实现注册方法的小例子(get和post方式)

    服务端文档: 注册 /my/register.php 输入参数: 参数说明: username 用户名 password 密码 email 邮箱 成功返回值:{"code": &q ...

  4. LCD常用接口原理概述

    Android LCD(5)  平台信息:内核:linux2.6/linux3.0系统:android/android4.0 平台:samsung exynos 4210.exynos 4412 .e ...

  5. Linux下mysql操作

    1.linux下MYSQL的启动与访问 http://www.cnblogs.com/hunter007/articles/2251795.html 2.linux下mysql基本的操作 http:/ ...

  6. linux Makefile(中文版1)

    ############################################################################## Generic Makefile for ...

  7. 高并发中nginx较优的配置

    一.这里的优化主要是指对nginx的配置优化,一般来说nginx配置文件中对优化比较有作用的主要有以下几项: 1.nginx进程数,建议按照cpu数目来指定,一般跟cpu核数相同或为它的倍数. wor ...

  8. ElasticSearch(七):ElasticSearch集群的搭建

    由于资源有限,使用是一台机器上安装三个elasticSearch服务端组成的集群. 1. 安装elasticSearch6.3.2 将原本安装的elasticSearch6.3.2复制两份,分别重新命 ...

  9. 最小生成树--prim+优先队列优化模板

    prim+优先队列模板: #include<stdio.h> //大概要这些头文件 #include<string.h> #include<queue> #incl ...

  10. js 每隔四位加一个空格

    var str = '2016060520103600466'; var str=str.replace(/\s/g,'').replace(/(.{4})/g,"$1 "); a ...