平台信息:
PC:ubuntu18.04、i5、anaconda2、cuda9.0、cudnn7.0.5、tensorflow1.10、GTX1060

作者:庄泽彬(欢迎转载,请注明作者)

说明:本文是在tensorflow社区的学习笔记,MNIST 手写数据入门demo

一、MNIST数据的下载,使用代码的方式:

input_data.py文件内容:

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False):
if fake_data:
self._num_examples = 10000
else:
assert images.shape[0] == labels.shape[0], (
"images.shape: %s labels.shape: %s" % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1.0 for _ in xrange(784)]
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
data_sets.train = DataSet([], [], fake_data=True)
data_sets.validation = DataSet([], [], fake_data=True)
data_sets.test = DataSet([], [], fake_data=True)
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels)
data_sets.validation = DataSet(validation_images, validation_labels)
data_sets.test = DataSet(test_images, test_labels)
return data_sets

新建test.py调用input_data.py进行下载手写识别的数据

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 11 23:10:15 2018 @author: zhuang
""" import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

注意test.py与input_data.py要放在同一个目录下,运行test.py之后会在当前目录生成MNIST_data/  存放下载的数据,下载的内容如下图

二、使用tensorflow构建模型进行训练

新建mnist-test.py内容如下:

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 12 11:43:37 2018 @author: zhuang
"""
import input_data
import tensorflow as tf mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder("float",[None,784]) w = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x,w)+b) # 计算交叉熵
y_ = tf.placeholder("float",[None,10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y)) #梯度下降算法,以0.01的学习率更新参数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.initialize_all_variables() sess = tf.Session()
sess.run(init) #训练模型1000次
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys}) #评估模型
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) print sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})

我们构建的模型手写识别的准确率在91%z左右

MNIST机器学习入门【学习笔记】的更多相关文章

  1. 机器学习入门学习笔记:(一)BP神经网络原理推导及程序实现

    机器学习中,神经网络算法可以说是当下使用的最广泛的算法.神经网络的结构模仿自生物神经网络,生物神经网络中的每个神经元与其他神经元相连,当它“兴奋”时,想下一级相连的神经元发送化学物质,改变这些神经元的 ...

  2. [转]MNIST机器学习入门

    MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_ ...

  3. tensorfllow MNIST机器学习入门

    MNIST机器学习入门 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读 ...

  4. Hadoop入门学习笔记---part4

    紧接着<Hadoop入门学习笔记---part3>中的继续了解如何用java在程序中操作HDFS. 众所周知,对文件的操作无非是创建,查看,下载,删除.下面我们就开始应用java程序进行操 ...

  5. Hadoop入门学习笔记---part3

    2015年元旦,好好学习,天天向上.良好的开端是成功的一半,任何学习都不能中断,只有坚持才会出结果.继续学习Hadoop.冰冻三尺,非一日之寒! 经过Hadoop的伪分布集群环境的搭建,基本对Hado ...

  6. PyQt4入门学习笔记(三)

    # PyQt4入门学习笔记(三) PyQt4内的布局 布局方式是我们控制我们的GUI页面内各个控件的排放位置的.我们可以通过两种基本方式来控制: 1.绝对位置 2.layout类 绝对位置 这种方式要 ...

  7. PyQt4入门学习笔记(一)

    PyQt4入门学习笔记(一) 一直没有找到什么好的pyqt4的教程,偶然在google上搜到一篇不错的入门文档,翻译过来,留以后再复习. 原始链接如下: http://zetcode.com/gui/ ...

  8. Hadoop入门学习笔记---part2

    在<Hadoop入门学习笔记---part1>中感觉自己虽然总结的比较详细,但是始终感觉有点凌乱.不够系统化,不够简洁.经过自己的推敲和总结,现在在此处概括性的总结一下,认为在准备搭建ha ...

  9. Hadoop入门学习笔记---part1

    随着毕业设计的进行,大学四年正式进入尾声.任你玩四年的大学的最后一次作业最后在激烈的选题中尘埃落定.无论选择了怎样的选题,无论最后的结果是怎样的,对于大学里面的这最后一份作业,也希望自己能够尽心尽力, ...

  10. Scala入门学习笔记三--数组使用

    前言 本篇主要讲Scala的Array.BufferArray.List,更多教程请参考:Scala教程 本篇知识点概括 若长度固定则使用Array,若长度可能有 变化则使用ArrayBuffer 提 ...

随机推荐

  1. LoadRunner-循环

    Edit Runtime Settings ,设置循环次数 在Open Parameter List 里设置循环参数,比如用例为删除notice,每执行一次用例id值不同. 把id替换为参数,并在参数 ...

  2. extjs错误,看到红色才能让自己记住知识点

    1.Cannot call method 'getColumnCount' of undefined Hi, maybe you use colModel before rendering.Notic ...

  3. xpath教程 2 - lxml库

    xpath教程 2 - lxml库 这些就是XPath的语法内容,在运用到Python抓取时要先转换为xml. lxml库 lxml 是 一个HTML/XML的解析器,主要的功能是如何解析和提取 HT ...

  4. post方式提交数据

    <!DOCTYPE HTML><html>    <head>        <meta charset="utf-8" />   ...

  5. PHP 常用命令行

    1.PHP运行指定文件 php -f test.php (-f 可省略) 2.命令行直接运行PHP代码 php -r "phpinfo();" 如果结果太长,还可以 php -r ...

  6. PHP生成zip压缩包

    /* * $res = new MakeZip($dir,$zipName); *@ $dir是被压缩的文件夹名称,可使用路径,例 'a'或者'a/test.txt'或者'test.txt' *@ $ ...

  7. 如何实现在H5里调起高德地图APP?

    http://www.cnblogs.com/milkmap/p/5912350.html 这一篇文章,将讲述如何在H5里调起高德地图APP,并展示兴趣点.适合于展示某个餐馆,商场等,让用户自行选择前 ...

  8. Scala系统学习(一):Scala概述

    Scala是可扩展语言的缩写,是一种混合功能编程语言. 它由Martin Odersky创建. Scala顺利整合面向对象和函数式语言的功能. Scala被编译后在Java虚拟机上运行. 许多现有公司 ...

  9. tomcat上部署CGI

    CGI的定义是:外部应用程序与Web服务器之间的接口. 1.Tomcat7支持CGI,但是默认配置是关闭的需要进行如下配置 修改Tomcat conf/web.xml中两处代码,默认是注释掉的,去掉注 ...

  10. testng入门教程4用TestNG执行case

    使用TestNG类执行测试用例.这个类的主入口点在TestNG的框架运行测试.用户可以创建自己的TestNG的对象,并调用它以许多不同的方式: 在现有的testng.xml 合成testng.xml, ...