初始目的

  将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定的好不好呢?

  我们使用样本的极大似然估计来度量,这里就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。

这个过程有几个难点:

  第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。

  第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。

EM算法的思想

  E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。

  从K-means里我们可以看出它其实就是EM的体现,E步是确定隐含类别变量,M步更新其他参数来使J最小化。这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。

EM算法就是这样,假设我们想估计知道A和B两个参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。

   EM的意思是“Expectation Maximization”在我们上面这个问题里面,我们是先随便猜一下男生(身高)的正态分布的参数:如均值和方差是多少。例如男生的均值是1米7,方差是0.1米(当然了,刚开始肯定没那么准),然后计算出每个人更可能属于第一个还是第二个正态分布中的(例如,这个人的身高是1米8,那很明显,他最大可能属于男生的那个分布),这个是属于Expectation一步。有了每个人的归属,或者说我们已经大概地按上面的方法将这200个人分为男生和女生两部分,我们就可以根据之前说的最大似然那样,通过这些被大概分为男生的n个人来重新估计第一个分布的参数,女生的那个分布同样方法重新估计。这个是Maximization。然后,当我们更新了这两个分布的时候,每一个属于这两个分布的概率又变了,那么我们就再需要调整E步……如此往复,直到参数基本不再发生变化为止。

http://blog.csdn.net/zouxy09/article/details/8537620

【机器学习】K-means聚类算法与EM算法的更多相关文章

  1. 机器学习优化算法之EM算法

    EM算法简介 EM算法其实是一类算法的总称.EM算法分为E-Step和M-Step两步.EM算法的应用范围很广,基本机器学习需要迭代优化参数的模型在优化时都可以使用EM算法. EM算法的思想和过程 E ...

  2. MM 算法与 EM算法概述

    1.MM 算法: MM算法是一种迭代优化方法,利用函数的凸性来寻找它们的最大值或最小值. MM表示 “majorize-minimize MM 算法” 或“minorize maximize MM 算 ...

  3. 猪猪的机器学习笔记(十四)EM算法

    EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...

  4. K-means聚类算法与EM算法

    K-means聚类算法 K-means聚类算法也是聚类算法中最简单的一种了,但是里面包含的思想却不一般. 聚类属于无监督学习.在聚类问题中,给我们的训练样本是,每个,没有了y. K-means算法是将 ...

  5. Python实现机器学习算法:EM算法

    ''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- ...

  6. 机器学习十大算法之EM算法

    此文已由作者赵斌授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 由于目前论坛的Markdown不支持Mathjax,数学公式没法正常识别,文章只能用截图上传了...     ...

  7. 吴裕雄 python 机器学习——K均值聚类KMeans模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  8. 聚类之K均值聚类和EM算法

    这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...

  9. 【机器学习】机器学习入门08 - 聚类与聚类算法K-Means

    时间过得很快,这篇文章已经是机器学习入门系列的最后一篇了.短短八周的时间里,虽然对机器学习并没有太多应用和熟悉的机会,但对于机器学习一些基本概念已经差不多有了一个提纲挈领的了解,如分类和回归,损失函数 ...

随机推荐

  1. 【虚拟化系列】VMware vSphere 5.1 虚拟机管理

        在上一博文中我们安装了强大的VMware vCenter管理中心,通过VMware vSphere Client连接到VMware vCenter管理中心, vSphere 的两个核心组件是 ...

  2. C语言学习笔记 (009) - 对函数的进一步讨论

    一.给main函数传参: # include <stdio.h> int main(int argc,char **argv){ printf(]); ; } 二.指向函数指针变量的定义 ...

  3. 【java】详解java中的注解(Annotation)

    目录结构: contents structure [+] 什么是注解 为什么要使用注解 基本语法 4种基本元注解 重复注解 使用注解 运行时处理的注解 编译时处理的注解 1.什么是注解 用一个词就可以 ...

  4. Linux安装ElasticSearch-2.2.0-分词器插件(IK)

    1.在gitpub上搜索elasticsearch-analysis,能够看到所有elasticsearch的分词器: 2.安装IK分词器:https://github.com/medcl/elast ...

  5. SharePoint 2013 Step by Step—— 为终端用户提供故障恢复的解决方案 Part I

    Disaster Recovery,我把他直译"故障恢复",或者也可以翻译成 "灾难复原 ".光字面意思就可以领会到,当SharePoint Server发生了 ...

  6. Package CJK Error: Invalid character code. 问题解决方法--xelatex和pdflatex编译的转换

    Package CJK Error: Invalid character code. 问题解决方法--xelatex和pdflatex编译的转换 解决方法:添加格式说明信息 将下面语句: \docum ...

  7. python 搭建ftp服务器

    代码示例: # coding: utf-8 import os from pyftpdlib.authorizers import DummyAuthorizer from pyftpdlib.han ...

  8. [CTCI] 单词最近距离

    单词最近距离 题目描述 有一篇文章内含多个单词,现给定两个单词,请设计一个高效算法,找出文中这两个单词的最短距离(即最少相隔的单词数,也就是两个单词在文章中位置的差的绝对值). 给定一个string数 ...

  9. 在eclipse 导入简单的Android studio 简单项目

    前言: 现在Android studio版本已经去到2.0(我暂时用着开发者版本)了,但是还是和以前的版本一样卡. (因为我用了很多第三方的UI控件,导致在Android studio build一个 ...

  10. 看了一下unity5.6的新功能 以及Timeline

    3月31日unity5.6发布,然而timeline(前sequence模块)被delay到unity 2017.上个星期官方又发布了unity 2017的beta版本 抽空看了下 (unity5.6 ...