Matlab 进阶学习记录

1. conf_proposal  =  proposal_config('image_means', model.mean_image, 'feat_stride', model.feat_stride);

  

function conf = proposal_config(varargin)
% conf = proposal_config(varargin)
% --------------------------------------------------------
% Faster R-CNN
% Copyright (c) 2015, Shaoqing Ren
% Licensed under The MIT License [see LICENSE for details]
% -------------------------------------------------------- ip = inputParser ; %% training
ip.addParamValue('use_gpu', gpuDeviceCount > 0, ...
@islogical); % whether drop the anchors that has edges outside of the image boundary
ip.addParamValue('drop_boxes_runoff_image', ...
true, @islogical); % Image scales -- the short edge of input image
ip.addParamValue('scales', 600, @ismatrix);
% Max pixel size of a scaled input image
ip.addParamValue('max_size', 1000, @isscalar);
% Images per batch, only supports ims_per_batch = 1 currently
ip.addParamValue('ims_per_batch', 1, @isscalar);
% Minibatch size
ip.addParamValue('batch_size', 256, @isscalar);
% Fraction of minibatch that is foreground labeled (class > 0)
ip.addParamValue('fg_fraction', 0.5, @isscalar);
% weight of background samples, when weight of foreground samples is
% 1.0
ip.addParamValue('bg_weight', 1.0, @isscalar);
% Overlap threshold for a ROI to be considered foreground (if >= fg_thresh)
ip.addParamValue('fg_thresh', 0.7, @isscalar);
% Overlap threshold for a ROI to be considered background (class = 0 if
% overlap in [bg_thresh_lo, bg_thresh_hi))
ip.addParamValue('bg_thresh_hi', 0.3, @isscalar);
ip.addParamValue('bg_thresh_lo', 0, @isscalar);
% mean image, in RGB order
ip.addParamValue('image_means', 128, @ismatrix);
% Use horizontally-flipped images during training ?
ip.addParamValue('use_flipped', true, @islogical);
% Stride in input image pixels at ROI pooling level (network specific)
% 16 is true for {Alex,Caffe}Net, VGG_CNN_M_1024, and VGG16
ip.addParamValue('feat_stride', 16, @isscalar);
% train proposal target only to labled ground-truths or also include
% other proposal results (selective search, etc.)
ip.addParamValue('target_only_gt', true, @islogical); % random seed
ip.addParamValue('rng_seed', 6, @isscalar); %% testing
ip.addParamValue('test_scales', 600, @isscalar);
ip.addParamValue('test_max_size', 1000, @isscalar);
ip.addParamValue('test_nms', 0.3, @isscalar);
ip.addParamValue('test_binary', false, @islogical);
ip.addParamValue('test_min_box_size',16, @isscalar);
ip.addParamValue('test_drop_boxes_runoff_image', ...
false, @islogical); ip.parse(varargin{:});
conf = ip.Results; assert(conf.ims_per_batch == 1, 'currently rpn only supports ims_per_batch == 1'); % if image_means is a file, load it...
if ischar(conf.image_means)
s = load(conf.image_means);
s_fieldnames = fieldnames(s);
assert(length(s_fieldnames) == 1);
conf.image_means = s.(s_fieldnames{1});
end
end

  

The inputParser object allows you to manage inputs to a function by creating an input scheme. To check the input, you can define validation functions for required arguments, optional arguments, and name-value pair arguments. Optionally, you can set properties to adjust the parsing behavior, such as handling case sensitivity, structure array inputs, and inputs that are not in the input scheme.

After calling the parse method to parse the inputs, the inputParser saves names and values of inputs that match the input scheme (stored in Results), names of inputs that are not passed to the function and, therefore, are assigned default values (stored in UsingDefaults), and names and values of inputs that do not match the input scheme (stored in Unmatched).

  

Check the validity of required and optional function inputs.

Create a custom function with required and optional inputs in the file findArea.m.

function a = findArea(width,varargin)
p = inputParser;
defaultHeight = 1;
defaultUnits = 'inches';
defaultShape = 'rectangle';
expectedShapes = {'square','rectangle','parallelogram'}; addRequired(p,'width',@isnumeric);
addOptional(p,'height',defaultHeight,@isnumeric);
addParameter(p,'units',defaultUnits);
addParameter(p,'shape',defaultShape,...
@(x) any(validatestring(x,expectedShapes))); parse(p,width,varargin{:});
a = p.Results.width .* p.Results.height;
The input parser checks whether width and height are numeric, and whether the shape matches a string in cell array expectedShapes. @ indicates a function handle, and the syntax @(x) creates an anonymous function with input x. Call the function with inputs that do not match the scheme. For example, specify a nonnumeric value for the width input: findArea('text')
Error using findArea (line 14)
The value of 'width' is invalid. It must satisfy the function: isnumeric.
Specify an unsupported value for shape: findArea(4,'shape','circle')
Error using findArea (line 14)
The value of 'shape' is invalid. Expected input to match one of these strings: square, rectangle, parallelogram The input, ''circle'', did not match any of the valid strings.

 http://www.cnblogs.com/heleifz/p/matlab-function-handle.html 

2. assert 语句的使用:

  assert: Generate an error when a condition is violated.  

  assert(EXPRESSION, ERRMSG) evaluates EXPRESSION and, if it is false, displays the string contained in ERRMSG. When ERRMSG is the last input to assert, MATLAB displays it literally, without performing any substitutions on the characters in ERRMSG.

  例如:如果 contion 不成立,则会输出对应的:提示错误信息。

    assert(mod(conf.batch_size, num_images) == 0, ...
sprintf('num_images %d must divide BATCH_SIZE %d', num_images, conf.batch_size));

  

3.  permute 函数:

 Permute array dimensions.

B = permute(A,ORDER) rearranges the dimensions of A so that they

are in the order specified by the vector ORDER.

  

  重新安排矩阵的x,y,z , 在二维中就相当于把x,y 对换,在三维中相当于可以把三个坐标的位置互换。

比如A =
A(:,:,1)=repmat(1,3,3);
A(:,:,2)=repmat(2,3,3);
A(:,:,3)=repmat(3,3,3);
disp(A); A(:,:,1) = 1 1 1
1 1 1
1 1 1 A(:,:,2) = 2 2 2
2 2 2
2 2 2 A(:,:,3) = 3 3 3
3 3 3
3 3 3 At = permute(A,[3,2,1]);
disp(At); At(:,:,1) = 1 1 1
2 2 2
3 3 3 At(:,:,2) = 1 1 1
2 2 2
3 3 3 At(:,:,3) = 1 1 1
2 2 2
3 3 3
permute(A,[3,2,1])

  

4. cellfun 函数:

  cellfun: Apply a function to each cell of a cell array. A = cellfun(FUN, C) applies the function specified by FUN to the contents of each cell of cell array C, and returns the results in the array A.

5. 从列表 A 中去搜索列表 B 中是否存在有相交元素,即:求 A and B 的差。

  

select = importdata('/home/wangxiao/Documents/Sun-80-dataset/VGG_16/iter_1/SUN80_50%_selected_without_HD.txt');
Unlabel = importdata('/home/wangxiao/Documents/Sun-80-dataset/iter_1/Sun_100_UnLabel_Train_0.5_.txt'); fid = fopen('/home/wangxiao/Documents/Sun-80-dataset/VGG_16/iter_1/SUN80_50%_Unselected_data.txt', 'a') ; selected_list = [] ;
unselected_list = [] ; for i = 1:size(Unlabel.data, 1)
disp(['deal with: ', num2str(i) , '/' , num2str(size(Unlabel.data, 1))]) ;
unlabel_name = Unlabel.textdata{i, 1}; % Unlabel image name
unlabel_label = Unlabel.data(i, 1) ; % Unlabel image label
count = 0;
for j = 1:size(select.textdata, 1)
select_name = select.textdata{j, 1}; % selected image name if strcmp(unlabel_name, select_name) % if have selected, jump it.
selected_list = [selected_list; unlabel_name];
% break;
else
count = count + 1;
end
if count == size(select.textdata, 1)
fprintf(fid, '%s ', num2str(unlabel_name));
fprintf(fid, '%s \n', num2str(unlabel_label));
end
end end

6. containers.Map() 的用法

  matlab中的containers.Map()有点类似于C++ STL中的map容器,具有key/value映射的功能.

    num = containers.Map({1, 2, 3}, {'one', 'two', 'three'})

  myMap = containers.Map(KEYS, VALUES) constructs a Map object myMap that contains one or more keys and a value for each of these keys, as specified in the KEYS and VALUES arguments.

  例如:从 Map 上提取一个值:myValue = myMap(key) ;

  修改键值对 (key-values pairs): myMap(key) = newValue ;

  增加一个新的键值对:myMap(key) = newValue ;

  可以通过 remove 的方法将 values 删除掉。


7. try catch end 机制:

  该机制可以防止由于程序中可能出现的错误而终止运行的情况:

  try

   ld     = load(anchor_cache_file) ;

     anchors   = ld.anchors ;

  catch

   base_anchor  = [1, 1, opts.base_size, opts.base_size] ;

     ratio_anchors     = ratio_jitter(base_anchor, opts.ratios) ;

  end


 8. About change the gray image into 3 channel RGB image: 

 clc; close all; clear all;
image = imread('/home/wangxiao/Documents/mnist_dataset/mnist_0_.png');
image = im2double(image);
image = double(image);
width = size(image, ); height = size(image, ); synthetic = zeros([, ]); for i = :size(image, )
for j = :size(image, ) synthetic(i, j) = image(i, j);
synthetic(i, j) = image(i, j);
synthetic(i, j) = image(i, j);
end
end
synthetic = im2uint8(synthetic);
imshow(synthetic);
figure; imshow(image); %%
synthetic2 = zeros([, , ]); for i = :size(image, )
for j = :size(image, ) synthetic2(i, j, ) = image(i, j, );
synthetic2(i, j, ) = image(i, j, );
synthetic2(i, j, ) = image(i, j, );
end
end
synthetic2 = im2uint8(synthetic2);
imshow(synthetic2);

synthetic is a single channel image, and synthetic2 is a three channel image.

Another Solution is: 

% if grayscale repeat one channel to match filters size
if(size(im, 3)==1)
  im = repmat(im, [1 1 3]);
end


9. Divided the image into specific patches using matlab function: mat2cell 

  This is a really cool function. For example, you read one image and divide it into 3*3 = 9 patches, and we assume the resolution of the image is: 100*100, you just need set the vectors M = [20, 30, 50]; N = [20, 20, 60] ;

Actually, as long as the sum of three values you set  equal to 100 (here is 20, 30, 50), it will be ok. The other vector N have the same reason.


10. Read images from disks and save these frames into avi video files.

 %% change the frame to videos to save.
clc; close all; clear all;
path = '/home/wangxiao/Downloads/files/Visual_Tracking/MDNet-CVPR2016/saved_tracking_results_MDNet_OTB100/Biker/';
files = dir([path, '*.png']);
count = ; for i=:size(files, )
xxx = strtok(files(i).name, 'M');
name = xxx(:end-);
image = imread([path, files(i).name]);
index = sprintf('%04d', str2double(name));
newName = [ index,'.jpg']; % a = sprintf('%04d',i); imwrite(image, [path, newName]);
end disp('==>> deal with image done !') jpgFiles = dir([path, '*.jpg']);
videoName = '/home/wangxiao/Videos/Biker_MDNet_OTB100.avi';
fps = ; %帧率
startFrame = ; %从哪一帧开始
endFrame = size(jpgFiles, ); %哪一帧结束 %生成视频的参数设定
aviobj=VideoWriter(videoName); %创建一个avi视频文件对象,开始时其为空
aviobj.FrameRate=fps; open(aviobj);%Open file for writing video data for i=startFrame:endFrame
frames = imread([path, jpgFiles(i).name]);
frames = im2frame(frames);
writeVideo(aviobj, frames);
end
close(aviobj); disp('==>> saved the video !')

11. Matlab中save实现保存数据到mat文件的正确使用  参考:http://blog.csdn.net/fx677588/article/details/52836348

 . 普通保存在当前文件夹下

   save matPath.mat A B;   % A B都是生成的数据矩阵

   需要注意这种方式只能将数据保存在当前文件夹下的第一个参数文件中,下面这样写并不能将数据保存到你想要的文件夹中的。

   saldir = './result/';
  savePath = [saldir imnames(len).name(:end-) '_KSD'];
  save savePath A;   上面程序也只能实现在当前文件夹下生成savePath.mat文件,然后数据保存到该文件中。并不能保存到需要的文件夹中。正确的写法是下面的方式。 . 保留数据到其他文件夹下   saldir = './result/';
  savePath = [saldir imnames(len).name(:end-) '_KSD' '.mat'];
  save(savePath,'A'); % 保存到其他文件夹的写法 这里也需要注意,保存的数据矩阵,即save函数的第二个参数不可以忘记单引号。

 12. 根据 attention maps 置信度的高低,生成对应的 bounding box : 

clc;close all;clear all;
Img=imread('/home/wangxiao/Documents/files/Visual_Tracking/MDNet-CVPR2016/MDNet-master/attentionMap/Basketball/0001.png');
if ndims(Img)==
I=rgb2gray(Img);
else
I=Img;
end
I=im2bw(I,graythresh(I));
[m,n]=size(I);
imshow(I);title('binary image');
txt=get(gca,'Title');
set(txt,'fontsize',);
L=bwlabel(I);
stats=regionprops(L,'all');
set(gcf,'color','w');
set(gca,'units','pixels','Visible','off');
q=get(gca,'position');
q()=;%设置左边距离值为零
q()=;%设置右边距离值为零
set(gca,'position',q);
for i=:length(stats)
hold on;
rectangle('position',stats(i).BoundingBox,'edgecolor','y','linewidth',);
temp = stats(i).Centroid;
plot(temp(),temp(),'r.');
drawnow;
end
frame=getframe(gcf,[,,n,m]);
im=frame2im(frame);
imwrite(im,'a.jpg','jpg');%可以修改保存的格式

Python Implementation: (from: https://www.jianshu.com/p/7693222523c0 )

import numpy as np
import scipy.ndimage as ndi
from skimage import measure,color
import matplotlib.pyplot as plt #编写一个函数来生成原始二值图像
def microstructure(l=256):
n = 5
x, y = np.ogrid[0:l, 0:l] #生成网络
mask = np.zeros((l, l))
generator = np.random.RandomState(1) #随机数种子
points = l * generator.rand(2, n**2)
mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) #高斯滤波
return mask > mask.mean() data = microstructure(l=128)*1 #生成测试图片 labels=measure.label(data,connectivity=2) #8连通区域标记
dst=color.label2rgb(labels) #根据不同的标记显示不同的颜色
print('regions number:',labels.max()+1) #显示连通区域块数(从0开始标记) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
ax1.imshow(data, plt.cm.gray, interpolation='nearest')
ax1.axis('off')
ax2.imshow(dst,interpolation='nearest')
ax2.axis('off') fig.tight_layout()
plt.show()

如果想分别对每一个连通区域进行操作,比如计算面积、外接矩形、凸包面积等,则需要调用measure子模块的regionprops()函数。该函数格式为:

skimage.measure.regionprops(label_image)

返回所有连通区块的属性列表,常用的属性列表如下表:

属性名称    类型  描述
area int 区域内像素点总数
bbox tuple 边界外接框(min_row, min_col, max_row, max_col)
centroid array   质心坐标
convex_area int 凸包内像素点总数
convex_image ndarray 和边界外接框同大小的凸包  
coords ndarray 区域内像素点坐标
Eccentricity float 离心率
equivalent_diameter float 和区域面积相同的圆的直径
euler_number int   区域欧拉数
extent float 区域面积和边界外接框面积的比率
filled_area int 区域和外接框之间填充的像素点总数
perimeter float 区域周长
label int 区域标记

 13. 将 video 切割为 frame: 

%% Input 2 videos and divide it into frames
clc; clear all; close all;
infraredvideo = 'C:\Users\王逍\Desktop\跟踪数据集\videos\';
savePath = 'C:\Users\王逍\Desktop\跟踪数据集\frames\'; % devide the infrared video into infrared images
videoList1=dir(fullfile(infraredvideo,'*.mp4'));
video_num=length(videoList1); for j=1:video_num infraredOutPath = [savePath, videoList1(j).name, '\'];
mkdir(infraredOutPath); frames = VideoReader([strcat(infraredvideo,videoList1(j).name)]);
numFrames =frames.NumberOfFrames;
for k = 1 : numFrames
disp(['==>> processing video ',num2str(k),' frames, please waiting....']);
frame = read(frames,k);
frame = imresize(frame, [480, 640]);
% figure(1); imshow(frame);
imwrite(frame, [infraredOutPath, sprintf('%08d.png',k)]);
end end

14. divide the total attention maps according to given video frames such as TC128. 

 %%
clc; close all; clear all;
path = '/media/wangxiao/E1F171026416B63F/tracking_benchmark/Temple-color-128/predicted_attentionMaps-v1/';
attentionfiles = dir([path, '*.png']); videoPath = '/media/wangxiao/E1F171026416B63F/tracking_benchmark/Temple-color-128/videos/';
videoFiles = dir(videoPath);
videoFiles = videoFiles(:end);
total = ;
savepath = '/media/wangxiao/E1F171026416B63F/tracking_benchmark/Temple-color-128/attentionMaps_per_video-v1/'; for i=:size(videoFiles, )
numCount = ;
videoName = videoFiles(i).name;
newVideoPath = [videoPath videoName '/img/']; videoframes = dir([newVideoPath, '*.jpg']); savePath = [savepath videoName '/'];
mkdir(savePath); disp(['==>> deal with video file: ', num2str(i)]);
% total = total + size(videoframes, ); for j=:size(videoframes, )
if numCount < size(videoframes, )
total = total + ;
numCount = numCount + ;
img = imread([path attentionfiles(total).name]);
% figure(); imshow(img); temp = sprintf('%04d', numCount);
saveName = [temp '.png'];
imwrite(img, [savePath saveName]);
else
break;
end end end

15. count the image list into txt files. 

 %%
market1501_path = '/home/wangxiao/Downloads/person-ReID/open-reid/examples/data/market1501/';
txtsavePath = '/home/wangxiao/Downloads/person-ReID/open-reid/examples/data/market1501/image_txt_list/'; bounding_box_test = [market1501_path 'bounding_box_test/'];
bounding_box_train = [market1501_path 'bounding_box_train/'];
gt_bbox = [market1501_path 'gt_bbox/'];
gt_query = [market1501_path 'gt_query/'];
images = [market1501_path 'images/'];
query = [market1501_path 'query/']; % #####################
bounding_box_test_files = dir([bounding_box_test, '*.jpg']);
bounding_box_train_files = dir([bounding_box_train, '*.jpg']);
gt_bbox_files = dir([gt_bbox, '*.jpg']);
gt_query_files = dir([gt_query, '*.jpg']);
images_files = dir([images, '*.jpg']);
query_files = dir([query, '*.jpg']); %% image files I
fid = fopen([txtsavePath 'bounding_box_test_files_image_list.txt'], 'w');
for i=:size(bounding_box_test_files, )
imgName = bounding_box_test_files(i).name;
fprintf(fid, '%s \n', imgName);
end
fclose(fid);
disp('==>> done I'); %% image files II
fid = fopen([txtsavePath 'bounding_box_train_files_image_list.txt'], 'w');
for i=:size(bounding_box_train_files, )
imgName = bounding_box_train_files(i).name;
fprintf(fid, '%s \n', imgName);
end
fclose(fid);
disp('==>> done II'); %% image files III
fid = fopen([txtsavePath 'gt_bbox_files_image_list.txt'], 'w');
for i=:size(gt_bbox_files, )
imgName = gt_bbox_files(i).name;
fprintf(fid, '%s \n', imgName);
end
fclose(fid);
disp('==>> done III'); %% image files IV
fid = fopen([txtsavePath 'gt_query_files_image_list.txt'], 'w');
for i=:size(gt_query_files, )
imgName = gt_query_files(i).name;
fprintf(fid, '%s \n', imgName);
end
fclose(fid);
disp('==>> done IV'); %% image files V
fid = fopen([txtsavePath 'images_files_image_list.txt'], 'w');
for i=:size(images_files, )
imgName = images_files(i).name;
fprintf(fid, '%s \n', imgName);
end
fclose(fid);
disp('==>> done V'); %% image files VI
fid = fopen([txtsavePath 'query_files_image_list.txt'], 'w');
for i=:size(query_files, )
imgName = query_files(i).name;
fprintf(fid, '%s \n', imgName);
end
fclose(fid);
disp('==>> done VI');

16. load json files using matlab code.

  this used package from: http://blog.csdn.net/sophia_xw/article/details/70141208    

  unzip this file and add path to matlab like this:

  

clear all; clc  

addpath('/home/wangxiao/jsonlab-1.5/jsonlab-1.5');

fname='results.json';
jsonData=loadjson(fname);

  

 17. 伪彩色图像的生成:

%%
clc; close all; clear all;
path = '\MotorRolling\';
files = dir([path, '*.png']);
savePath = '\fakeColor_MotorRolling\'; ori_img_path = '\Benchmark\MotorRolling\img\';
ori_img = imread([ori_img_path, '0001.jpg']);
oriFiles = dir([ori_img_path, '*.jpg']);
height = size(ori_img, );
width = size(ori_img, ); for img_idex =:length(files)
im = imread([path, files(img_idex).name]);
originalImage = imread([ori_img_path, oriFiles(img_idex).name]); % for idx =:size(im, )
% for jdx = :size(im, )
% if im(idx, jdx) <= ;
% im(idx, jdx) = ;
% end
% end
% end I=double(im);
[m,n]=size(I);
L=;
for i=:m
for j=:n
if I(i,j)<=L/
R(i,j)=;
G(i,j)=*I(i,j);
B(i,j)=L;
else if I(i,j)<=L/
R(i,j)=;
G(i,j)=L;
B(i,j)=-*I(i,j)+*L;
else if I(i,j)<=*L/
R(i,j)=*I(i,j)-*L;
G(i,j)=L;
B(i,j)=;
else
R(i,j)=L;
G(i,j)=-*I(i,j)+*L;
B(i,j)=;
end
end
end
end
end
for i=:m
for j=:n
rgbim(i,j,)=R(i,j);
rgbim(i,j,)=G(i,j);
rgbim(i,j,)=B(i,j);
end
end
rgbim=rgbim/;
% figure;
% subplot(,,);
% imshow(gray);
% subplot(,,); fake_color_img = imresize(rgbim, [height, width]);
imshow(fake_color_img);
imwrite(fake_color_img, [savePath, oriFiles(img_idex).name]); img_idex end

18. frame to video transformation

%%
clc; close all; clear all;
videoPath='\demo_videos\demo_Skater2\';
salVideo = '\Benchmark\Skater2\img\';
resultsPath = '\saved_figure_tracking_results\Skater2\v\';
file=dir([videoPath,'*.jpg']);
file_=dir([salVideo,'*.jpg']);
resultsFiles = dir([resultsPath, '*.jpg']);
writerObject = VideoWriter('OUR_Skater2.avi');
writerObject.FrameRate =25; %writerObject.Quality = 50;
open( writerObject );
Num= length(file);
for k =1 : Num
trackingResults = imread([resultsPath, resultsFiles(k).name]);
disp(['processing the ',num2str(k),'/',num2str(Num),' frames, please waiting....']);
frame_1 = imread([videoPath,file(k).name]);
frame_222 = imread([salVideo,file_(k).name]); frame_2 = zeros(size(frame_222, 1), size(frame_222, 2), 3);
if size(frame_222, 3) == 1
frame_2(:,:,1) = frame_222;
frame_2(:,:,1) = frame_222;
frame_2(:,:,1) = frame_222;
end
frame_2 = uint8(frame_2); frame_3 = frame_1*0.5+frame_2*0.5;
trackingResults = imresize(trackingResults, [size(frame_2, 1), size(frame_2, 2)]);
fullframe = [ frame_2, frame_3, trackingResults ];
writeVideo( writerObject, fullframe );
end
close( writerObject );

19. video to frame transformation: 

clear all;close all;

%% video
videoPath='.\2\';
outPath='.\2\'; T=[1.72844 0.0692766 -293
-0.0692766 1.72844 -94
0 0 1]; tform = maketform('affine', T');
videoList=dir(fullfile(videoPath,'*.avi'));
video_num=length(videoList);
for j=1:video_num frames = VideoReader (strcat(videoPath,videoList(j).name));
numFrames =frames.NumberOfFrames;
for k = 1 : numFrames
disp(['processing the ',num2str(k),' frames, please waiting....']);
frame = read(frames,k);
transformFrame = imtransform(frame,tform,'XData',[1 320], 'YData',[1 240]);
% frame=imresize(frame,[288,384]);
imwrite(transformFrame,[outPath,sprintf('%08d.png',k)]); end end

 20. Matlab load json files and save it into txt file: 

%%
clc; close all; clear all; warning off;
addpath('E:\Matlab2018\jsonlab-1.5\jsonlab-1.5');
oriVideoPath = 'I:\Tracking-Dataset\Video_Labeled_set\';
savePath = 'E:\dataset_processsed_data\'; videoFiles = dir(oriVideoPath);
videoFiles = videoFiles(:end); for videoIDX =:size(videoFiles, )
videoName = videoFiles(videoIDX).name;
videoPath = [oriVideoPath videoName '\']; video_imgPath = [videoPath '*.png'];
video_imgFiles = dir(video_imgPath); saveImage_path = [savePath videoName '\imgs\'];
mkdir(saveImage_path); anno_files = dir(videoPath);
anno_name = anno_files( length(anno_files)).name;
anno_path = [videoPath anno_name '\']; annoFiles = dir(anno_path);
annoFiles = annoFiles(:end); gt_txtFiles = fopen([savePath videoName '\groundtruth.txt'], 'w'); for imgIDX =:size(video_imgFiles, ) disp(['==>> video ', num2str(videoIDX), '\', num2str(size(videoFiles, 1)), ' img ', num2str(imgIDX), '\', num2str(size(video_imgFiles, 1))]); image = imread([videoPath video_imgFiles(imgIDX).name]);
imageIndex = sprintf('%05d', imgIDX);
newImgName = [num2str(imageIndex) '.png'] ;
imwrite(image, [saveImage_path newImgName]); jsonFIle_path = [anno_path annoFiles(imgIDX).name];
json2data = loadjson(jsonFIle_path);
BBox = json2data.outputs.object{, }.bndbox;
x1 = BBox.xmin;
y1 = BBox.ymin;
w = BBox.xmax - BBox.xmin;
h = BBox.ymax - BBox.ymin; fprintf(gt_txtFiles, '%s', num2str(x1));
fprintf(gt_txtFiles, ',');
fprintf(gt_txtFiles, '%s', num2str(y1));
fprintf(gt_txtFiles, ',');
fprintf(gt_txtFiles, '%s', num2str(w));
fprintf(gt_txtFiles, ',');
fprintf(gt_txtFiles, '%s', num2str(h));
fprintf(gt_txtFiles, '\n'); end fclose(gt_txtFiles);
end

 

  

  

Matlab 进阶学习记录的更多相关文章

  1. 【MATLAB】学习记录2-数组与向量

    1-数组 A=[1,2,3;4,5,6]%创建数组 [r,c]=size(A)%返回行列数 b=size(A) c=length(A)%返回最大的维数值 2-创建数组 先创建A数组 B=zeros(2 ...

  2. 【Matlab】学习记录1-简单的函数介绍

    sind(30) %正弦函数,以角度为单位  ans =0.5000 exp(2) %以e为底的指数函数,即e^x   ans =7.3891 log10(10)  ans =1log(exp(1)) ...

  3. (一)《SQL进阶教程》学习记录--CASE

    背景:最近用到统计之类的复杂Sql比较多,有种"提笔忘字"的感觉,看书练习,举一反三,巩固加强. (一) <SQL进阶教程>学习记录--CASE (二) <SQL ...

  4. java后端学习记录2019

    学习计划 2019年计划 1.学习计算机基础,并加以实践.包括LeetCode刷题.数据库原理(索引和锁.Sql优化等).网络协议(Http.Tcp).操作系统(加深Linux).<Http权威 ...

  5. HTML与CSS学习记录

    title: HTML与CSS学习记录 toc: true date: 2018-09-10 14:04:59 <HTML与CSS进阶教程读书笔记> HTML基础知识 HTML与XHTML ...

  6. Python全栈工程师系列学习之学习记录

    @ 目录 前言 Day 01 一.python的历史和种类 二.安装python解释器以及配置环境变量 三.变量.常量和注释 Day 02 Day 03 Day 04 Day 05 Day 06 一. ...

  7. 【C++】近期C++特性进阶学习总结(一)

    前言 C++的特性多的数不胜数,语言标准也很多,所以不定期对近期所学的C++知识进行总结,是对自身知识体系检查的良好机会,顺便锻炼一下写博客的文笔 三/五/零之法则 三之法则:如果某个类需要用户定义的 ...

  8. Quartz 学习记录1

    原因 公司有一些批量定时任务可能需要在夜间执行,用的是quartz和spring batch两个框架.quartz是个定时任务框架,spring batch是个批处理框架. 虽然我自己的小玩意儿平时不 ...

  9. Java 静态内部类与非静态内部类 学习记录.

    目的 为什么会有这篇文章呢,是因为我在学习各种框架的时候发现很多框架都用到了这些内部类的小技巧,虽然我平时写代码的时候基本不用,但是看别人代码的话至少要了解基本知识吧,另外到底内部类应该应用在哪些场合 ...

随机推荐

  1. 从UWP到SWIFT - TableBarController 和 Pivot

    现在我还不是特别能适应swift中页面做bar的做法,感觉很奇怪. 现在我正在做一个简单的新浪微博,有一个主页,顶部有导航栏,底部是选项卡. 如果用wup来做的话,顶部应该是我们自己写的Usercon ...

  2. [转]jq选择器

    jQuery-强大的jQuery选择器 (详解)[转] 1. 基础选择器 Basics 名称 说明 举例 #id 根据元素Id选择 $("divId") 选择ID为divId的元素 ...

  3. WPF(WP7、WP8)实现圆形图片

    在WP平台上制作图片圆角其实特别简单, 用Image控件的Clip属性即可(RadiusX-Y设置为图片尺寸的一半) <Image Source="{Binding photo}&qu ...

  4. 通过git在github上建立gh-pages分支并查看网页效果

    建立gh-pages分支:    进入到你想要上传的文件夹下:           cd text(text为文件夹名)           git初始化           git init   创 ...

  5. phpMyAdmin上传文件大小限制

    今日偶然要导一张数据表至mysql数据库中,但发现文件为2.9M,导入失败. 看一下返回的错误原因为文件超过2M的大小限制,郁闷. 找了一下“越狱”的方法,需要修改php.ini和phpmyadmin ...

  6. jquery跨域Ajax请求

    sonp原理: 首先在客户端注册一个callback, 然后把callback的名字传给服务器. 此时,服务器先生成 json 数据.然后以 javascript 语法的方式,生成一个function ...

  7. C - 搜索

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Descr ...

  8. ASP.NET收发邮件

    在.NET中常见到在线发邮件的实例,网站加上这个功能可以方便站长与用户的交流. NET 中发邮件有时候会用到IIS组件中的邮件服务器,不过复杂.对虚拟主机的配置也较麻烦, 也可用第三方组件比如Jmai ...

  9. tinyXML的用法

    tinyXML一款很优秀的操作C++类库,文件不大,但方法很丰富,和apache的Dom4j可以披靡啊!习惯了使用java类库的我看到这么丰富的c++类库,很高兴!它使用很简单,只需要拷贝几个文件到你 ...

  10. FreeBSD 配置

    FreeBSD 配置 1. FreeBSD源代码下载站点: