POJ2779 线性DP 或 杨氏三角 和 钩子公式
本来就想回顾一下基础的线性DP谁知道今早碰到的都是这种大难题,QQQQ,不会
这个也没有去理解线性DP的解法,了解了杨氏三角和钩子公式,做出了POJ2779
杨氏矩阵和勾长公式
杨氏矩阵又叫杨氏图表,它是这样一个矩阵,满足条件:
(1)如果格子(i,j)没有元素,则它右边和上边的相邻格子也一定没有元素。
(2)如果格子(i,j)有元素a[i][j],则它右边和上边的相邻格子要么没有元素,要么有元素且比a[i][j]大。
1 ~ n所组成杨氏矩阵的个数可以通过下面的递推式得到:
如图就是n=3时的杨氏矩阵。
下面介绍一个公式,那就是著名的钩子公式。
对于给定形状,不同的杨氏矩阵的个数为:n!除以每个格子的钩子长度加1的积。其中钩子长度定义为该格子
右边的格子数和它上边的格子数之和。
钩子公式:res=n! / (hock[1]*hock[2]*.....hock[n]);
hock[i]=在其上方和右方的所有个数+1;
reference : 咿呀而已
知道了这个就能后解出来了
奥,有一个地方要注意就是res=n! / (hock[1]*hock[2]*.....hock[n]);
为了防止分子或分母的越界情况,要进行单一元素的约分化简;很好理解看代码就ok
#include <iostream>
#include <cstdio>
#include <string.h>
using namespace std;
int gcd(int a,int b)
{
return b == ? a : gcd(b,a % b);
} int d[];
int num[]; int main()
{
int n;
while(~scanf("%d",&n) && n)//行数
{
for(int i = ;i <= n;i++)
{
scanf("%d",&d[i]);//行长度
}
int tot = ;
memset(num,,sizeof(num));
//计算hock值————
long long t1,t2;
for(int i = ;i <= n;i++)//遍历行数
{
for(int j = ;j <= d[i];j++)//遍历行上的铜须
{
tot++;
num[tot] += d[i] - j + ;//应该求右面
for(int k = i + ;k <= n;k++)//和下面的看后面的同学有没有满足的
{
if(d[k] >= j)
{
num[tot]++;
}
else////如果紧靠的都没有,下面的更不会有
{
break;
} }
}
}
//代入钩子公式——互相约分一下
t1 = ;
t2 = ;
for(int i = ;i <= tot;i++)
{
t1 *= i;
t2 *= num[i];
int t = gcd(t1,t2);
t1 /= t;
t2 /= t;
}
printf("%lld\n",t1 / t2); }return ;
}
#include <iostream>
#include <cstdio>
#include <string.h>
using namespace std;
int gcd(int a,int b)
{
return b == ? a : gcd(b,a % b);
} int d[];
int num[]; int main()
{
int n;
while(~scanf("%d",&n) && n)//行数
{
for(int i = ;i <= n;i++)
{
scanf("%d",&d[i]);//行长度
}
int tot = ;
memset(num,,sizeof(num));
//计算hock值————
long long t1,t2;
for(int i = ;i <= n;i++)//遍历行数
{
for(int j = ;j <= d[i];j++)//遍历行上的铜须
{
tot++;
num[tot] += d[i] - j + ;//应该求右面
for(int k = i + ;k <= n;k++)//和下面的看后面的同学有没有满足的
{
if(d[k] >= j)
{
num[tot]++;
}
else////如果紧靠的都没有,下面的更不会有
{
break;
} }
}
}
//代入钩子公式——互相约分一下
t1 = ;
t2 = ;
for(int i = ;i <= tot;i++)
{
t1 *= i;
t2 *= num[i];
int t = gcd(t1,t2);
t1 /= t;
t2 /= t;
}
printf("%lld\n",t1 / t2); }return ;
}
POJ2779 线性DP 或 杨氏三角 和 钩子公式的更多相关文章
- poj2279排队——杨氏矩阵与钩子公式(DP爆内存)
题目:http://poj.org/problem?id=2279 书上的DP做法会爆内存,尝试写了一个,过了样例. 转载: 代码如下: #include<iostream> #inclu ...
- 线性DP详解
顾名思义,线性DP就是在一条线上进行DP,这里举一些典型的例子. LIS问题(最长上升子序列问题) 题目 给定一个长度为N的序列A,求最长的数值单调递增的子序列的长度. 上升子序列B可表示为B={Ak ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
- nyoj44 子串和 线性DP
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...
随机推荐
- BZOJ1093或洛谷2272 [ZJOI2007]最大半连通子图
BZOJ原题链接 洛谷原题链接 和 Going from u to v or from v to u?(题解)这道题类似,只不过是求最大子图的大小和个数而已. 一样用\(tarjan\)求强连通分量, ...
- 20172306《Java程序设计与数据结构》第八周学习总结
20172306<Java程序设计>第8周学习总结 教材学习内容总结 第十章最开始自己看的时候,没怎么看懂,等老师讲完之后,又看了一遍,就理解了很多.第十章主要学习了以下几点: 1.对于几 ...
- 20172306《Java程序设计》第四周学习总结
20172306 <Java程序设计>第四周学习总结 教材学习内容总结 第四章: 1. 类和对象的回顾:除了看书,我还上网找了一下两者的一些区别. 2. 编写类时,了解到初始化.形式参数. ...
- Spring IOC(一)体系结构
Spring IOC(一)体系结构 Spring 系列目录(https://www.cnblogs.com/binarylei/p/10198698.html) BeanFactory 是Spring ...
- Python之路(第二十五篇) 面向对象初级:反射、内置方法
[TOC] 一.反射 反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问.检测和修改它本身状态或行为的一种能力(自省).这一概念的提出很快引发了计算机科学领域关于应用反射性的研究.它 ...
- sqli-labs:18-22,http头部注入
sqli18: uname和passwd被处理了: uagent和ip插入到了数据库: 还带回显. 抓包改包 sqli19: null sqli20: 审计代码,大概如下 当我们正常登录后userna ...
- rapidjson 的封装学习
#pragma once #include "Util.h" #include "rapidjson/writer.h" #include "rapi ...
- jvm 启动参数设置(转载)
JVM启动参数 http://onlyor.iteye.com/blog/1722413 博客分类: java java java启动参数共分为三类其一是标准参数(-),所有的JVM实现都必须实现这些 ...
- JAVA钩子方法+模板方法
模板方法: 写一个抽象类,这个抽象类有多个抽象方法,里面设立一个模板方法,这个模板方法也可以称之为模板算法,设立不同方法的执行顺序,封装业务流程,暴露出去: 模板方法模式的特点很好总结,它将一般性的可 ...
- Django之url定义和ORM框架的使用
前言,Django安装 pip install django # 官网安装最新版本 pip install django -i "https://pypi.doubanio.com/simp ...