题意:

  有n门考试,每门考试都有两个时间,存在几门考试时间冲突,求考完所有的考试,所用的最后时间的最小值

 解析:

  对于时间冲突的考试 就是一个联通块 把每个考试看作边,两个时间看作点,那么时间冲突的考试即为一个连通块

  对于一个连通块

  1、如果边数等于点数 即为一个基环树,那么明显 这个连通块的最后时间为 权值最大的点

  2、如果边数小于点数 即为一个树,那么连通块的最后时间为 权值次大的点(画画图)

  3、如果边数大于点数 那么就冲突了, 输出-1就好了

  离散化一下

#include <bits/stdc++.h>
#define mem(a, b) memset(a, b, sizeof(a))
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
using namespace std;
const int maxn = 2e6+, INF = 0x7fffffff;
int n, not_pass, s, t, ans;
LL mx, mxx;
int head[maxn], cnt, vis[maxn], d[maxn];
LL a[maxn], b[maxn];
vector<LL> v;
int get_id(LL x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }
struct node
{
int u, v, next;
}Node[maxn]; void add_(int u, int v)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v)
{
add_(u, v);
add_(v, u);
}
void init()
{
mem(head, -);
cnt = ;
} void dfs(int u, int pa)
{
vis[u] = ;
if(v[u] >= mx) mxx = mx, mx = v[u];
else mxx = max(mxx, v[u]);
for(int i=head[u]; i!=-; i=Node[i].next)
{
node e = Node[i];
if(e.v == pa) continue;
if(!vis[e.v]) d[e.v] = d[u] + , dfs(e.v, u);
else
{
if(d[e.v] > d[u]) ans++;
}
}
} int main()
{
init();
rd(n);
rep(i, , n)
{
rd(a[i]), rd(b[i]);
v.push_back(a[i]);
v.push_back(b[i]);
}
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
for(int i=; i<n; i++)
add(get_id(a[i]), get_id(b[i]));
int len = v.size();
LL res = -INF;
for(int i=; i<len; i++)
{
mx = mxx = ans = ;
if(vis[i]) continue;
dfs(i, -);
if(ans >= )
{
puts("-1");
return ;
}
if(ans == )
res = max(res, mx);
else if(ans == )
{
res = max(res, mxx);
// cout<< mxx << " " << mx << endl;
}
}
// cout<< mxx << " " << endl;
pd(res); return ;
}

Session in BSU CodeForces - 1027F(思维 树 基环树 离散化)的更多相关文章

  1. 洛谷AT2046 Namori(思维,基环树,树形DP)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 树 每次操作把相邻且同色的点反色,直接这样思考会发现状态有很强的后效性,没办法考虑转移. 因为树是二分图,所以我们转化模型:在树的奇数层的所有点上都有一 ...

  2. hdu 6393 Traffic Network in Numazu (树链剖分+线段树 基环树)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=6393 思路:n个点,n条边,也就是基环树..因为只有一个环,我们可以把这个环断开,建一个新的点n+1与之相 ...

  3. Codeforces 1027F Session in BSU - 并查集

    题目传送门 传送门I 传送门II 传送门III 题目大意 有$n​$门科目有考试,第$i​$门科目有两场考试,时间分别在$a_i, b_i\ \ (a_i < b_i)​$,要求每门科目至少参加 ...

  4. Codeforces 1027F. Session in BSU

    题目直通车:Codeforces 1027F. Session in BSU 思路: 对第一门考试,使用前一个时间,做标记,表示该时间已经用过,并让第一个时间指向第二个时间,表示,若之后的考试时间和当 ...

  5. [CF1027F]Session in BSU[最小基环树森林]

    题意 有 \(n\) 门课程,每门课程可以选择在 \(a_i\) 或者 \(b_i\) 天参加考试,每天最多考一门,问最早什么时候考完所有课程. \(n\leq 10^6\). 分析 类似 [BZOJ ...

  6. [Codeforces 1027 F] Session in BSU [并查集维护二分图匹配问题]

    题面 传送门 思路 真是一道神奇的题目呢 题目本身可以转化为二分图匹配问题,要求右半部分选择的点的最大编号最小的一组完美匹配 注意到这里左边半部分有一个性质:每个点恰好连出两条边到右半部分 那么我们可 ...

  7. Wannafly挑战赛16 #E 弹球弹弹弹 splay+基环树+各种思维

    链接:https://ac.nowcoder.com/acm/problem/16033来源:牛客网 有n个位置,标号为1到n的整数,m次操作,第i次操作放置一个弹球在b[i] xor c[i-1]处 ...

  8. codeforces1027F. Session in BSU

    题目链接 codeforces1027F. Session in BSU 题解 二分图匹配就fst了....显然是过去的,不过tle test87估计也pp了,好坑 那么对于上面做匹配的这个二分图分情 ...

  9. CF 1027 F. Session in BSU

    F. Session in BSU https://codeforces.com/contest/1027/problem/F 题意: n场考试,每场可以安排在第ai天或者第bi天,问n场考完最少需要 ...

随机推荐

  1. [浅谈CSS核心概念] CSS元素类型和盒模型

    元素类型 在CSS中,HTML标签元素分为三种类型: 块状元素 内联元素(也叫行内元素) 内联块状元素 它们之间的区别在于: 块级元素会独占一行,内联元素和内联块状元素则都会在一行内显示 块状元素和内 ...

  2. 【转】PHP 类与对象

    原文:http://blog.csdn.net/e421083458/article/details/8217650 1.类与对象 对象:实际存在该类事物中每个实物的个体.$a =new User() ...

  3. 20155206 Exp8 WEB基础实践

    20155206 Exp8 WEB基础实践 基础问题回答 (1)什么是表单 表单在网页中主要负责数据采集功能. 一个表单有三个基本组成部分: 表单标签:这里面包含了处理表单数据所用CGI程序的URL以 ...

  4. 20155207王雪纯《网络对抗》Exp4 恶意代码分析

    20155207 <网络对抗> 恶意代码分析 学习总结 实践目标 1.是监控你自己系统的运行状态,看有没有可疑的程序在运行. 2.是分析一个恶意软件,就分析Exp2或Exp3中生成后门软件 ...

  5. 《网络对抗》Exp7 网络欺诈防范

    20155336<网络对抗>Exp7 网络欺诈防范 实验内容 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 简单应用SET工具建立冒名网站 (1分 ...

  6. POJ1807&&1276

    DP专题下的背包专题 其实就是PJ的那些东西了 主流的背包有三种:01背包,完全背包和多重背包 其中01背包和完全背包的转移就比较经典了,而多重背包也是在前两者基础上演变一下即可 1837 题意:有一 ...

  7. 全面掌握IO(输入/输出流)

    File类: 程序中操作文件和目录都可以使用File类来完成即不管是文件还是目录都是使用File类来操作的,File能新建,删除,重命名文件和目录,但File不能访问文件内容本身,如果需要访问文件本身 ...

  8. Visual studio 2017中 Javascript对于Xrm对象模型没有智能提示的解决办法

    Visual studio 2017中 Javascript对于Xrm对象模型没有智能提示的解决办法 先上个图.语法提示支持到 Microsoft Dynamics xRM API 8.2 也就是cr ...

  9. liunx总结题

    一.            简述什么是Linux内核,这个学期学了Linux课程的哪些内容.(10分) Linux内核诞生于1991年,由芬兰学生Linus Torvalds(林纳斯.托瓦斯)发起,那 ...

  10. unity2D以最小的角度旋转到目标方向(y方向为角色的主方向)

    一.使用向量原理转换到目标方向 为了让角色的自身y转向目标方向,并且以最小角度旋转,要点是获得当前方向与目标方向的叉值,从而判断应该旋转的方向 float rotateSpeed; //相对目标位置运 ...