题目链接:

https://www.lydsy.com/JudgeOnline/problem.php?id=1834

题目大意:

给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。
求: 
1、在不扩容的情况下,1到N的最大流; 
2、将1到N的最大流增加K所需的最小扩容费用。

思路:

第一问直接求费用流,第二问,在第一问的残余网络上,对于每条边额外加上INF容量费用为w的边,限制最大流量为k,也就是在0-1之间连边,容量为s,费用为0,然后跑一遍最小费用流就可以了。

 #include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);//不可再使用scanf printf
#define Max(a, b) ((a) > (b) ? (a) : (b))//禁用于函数,会超时
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Mem(a) memset(a, 0, sizeof(a))
#define Dis(x, y, x1, y1) ((x - x1) * (x - x1) + (y - y1) * (y - y1))
#define MID(l, r) ((l) + ((r) - (l)) / 2)
#define lson ((o)<<1)
#define rson ((o)<<1|1)
#define Accepted 0
#pragma comment(linker, "/STACK:102400000,102400000")//栈外挂
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
typedef long long ll;
const int MOD = ;//const引用更快,宏定义也更快
const double eps = 1e-;
const double pi = acos(-);
const int INF = 0x3f3f3f3f;
const int maxn = + ;
struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost):u(u), v(v), c(c), f(f), cost(cost){}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中 void addedge(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, long long & cost)
{
for(int i = ; i <= t + ; i++)d[i] = INF;//Bellman算法的初始化
memset(inq, , sizeof(inq));
d[s] = ;inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ;a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for(int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if(now.c > now.f && d[v] > d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if(!inq[v]){q.push(v);inq[v] = ;}//Bellman 算法入队
}
}
}
if(d[t] == INF)return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for(int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int MincostMaxflow(int s, int t, long long & cost)
{
cost = ;
int flow = ;
while(bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
int u[maxn], v[maxn], c[maxn], w[maxn];
int main()
{
IOS;
int n, m, k;
cin >> n >> m >> k;
for(int i = ; i <= m; i++)cin >> u[i] >> v[i] >> c[i] >> w[i];
for(int i = ; i <= m; i++)addedge(u[i], v[i], c[i], );
ll cost;
cout<<MincostMaxflow(, n, cost)<<" ";
addedge(, , k, );
addedge(n, n + , k, );
for(int i = ; i <= m; i++)addedge(u[i], v[i], INF, w[i]);
MincostMaxflow(, n + , cost);
cout<<cost<<endl;
return Accepted;
}

BZOJ 1834 网络扩容 最大流+最小费用流的更多相关文章

  1. BZOJ 1834 网络扩容(最大流+费用流)

    对于第一问,直接求最大流. 对于第二问,建源点s和汇点t,s连1容量为INF,费用为0的边,n连t容量为最大流+k,费用为0的边.这样就把最大流限制为最多增加k了. 限制需要求扩充的最小费用,原图的边 ...

  2. 【BZOJ1834】[ZJOI2010]network 网络扩容 最大流+最小费用流

    [BZOJ1834][ZJOI2010]network 网络扩容 Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不 ...

  3. BZOJ 1834网络扩容题解

    一道不算太难的题目 但是真的很恶心 显然,对于第一问,我们直接无脑打模板就好了 第二问也不是很难,我们将每条边再连一条容量为inf,费用为w的边 但是流量只要小于第一问的答案加k就行了 所以我们增加一 ...

  4. BZOJ 1834: [ZJOI2010]network 网络扩容(最大流+最小费用最大流)

    第一问直接跑最大流.然后将所有边再加一次,费用为扩容费用,容量为k,再从一个超级源点连一条容量为k,费用为0的边到原源点,从原汇点连一条同样的边到超级汇点,然  后跑最小费用最大流就OK了. ---- ...

  5. bzoj 1834: [ZJOI2010]network 网络扩容 -- 最大流+费用流

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Description 给定一张有向图,每条边都有一个容量C和一 ...

  6. BZOJ 1834--网络扩容(最大流&费用流)

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 3351  Solved: 1750[Submit ...

  7. [BZOJ1834][ZJOI2010]network 网络扩容 最大流+费用流

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Submit: 3330  Solved: 1739 [Subm ...

  8. [ZJOI2010][bzoj1834] 网络扩容 [费用流]

    题面 传送门 思路 第一问:无脑网络流跑一波 第二问: 先考虑一个贪心的结论:扩容出来的扩容流量一定要跑满 证明显然 因此我们可以把扩容费用可以换个角度思考,变成增加一点流量,花费W的费用 这样,我们 ...

  9. bzoj1834: [ZJOI2010]network 网络扩容 费用流

    bzoj1834 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容 ...

随机推荐

  1. C#操作MongoDB入门

    1.MongoDB安装及配置 (1)下载:   mongodb官网 https://www.mongodb.com/download-center      进入官网下载页,你会发现版本都是windo ...

  2. C# 四舍五入 保留两位小数(转载)

    一.C#默认四舍五入 1 Math.Round(45.367,2) //Returns 45.372 Math.Round(45.365,2) //Returns 45.36二.C#中的Round() ...

  3. 36.Linux驱动调试-根据oops定位错误代码行

    1.当驱动有误时,比如,访问的内存地址是非法的,便会打印一大串的oops出来 1.1以LED驱动为例 将open()函数里的ioremap()屏蔽掉,直接使用物理地址的GPIOF,如下图所示: 1.2 ...

  4. oracle中数据类型number(m,n)

    oracle中数据类型number(m,n)中m表示的是所有有效数字的位数,n表示的是小数位的位数.m的范围是1-38,即最大38位. 1> .NUMBER类型细讲:Oracle   numbe ...

  5. (六)彻底理解synchronized

    1.sychronized简介 在学习知识之前,我们先来看一个现象 public class SynchronizedDemo implements Runnable { private static ...

  6. Access to XMLHttpRequest at 'XXX' from origin 'XX' has been blocked by CORS policy: No 'Access-Control-Allow-Origin' header is present o AJAX跨域请求解决方法

    今天出现了一个问题找了好久先看代码: 这可能是个BUG吧插入代码: dataType: 'jsonp', crossDomain: true, 最终:

  7. Java虚拟机 - 多态性实现机制

    [深入Java虚拟机]之五:多态性实现机制——静态分派与动态分派 方法解析 Class文件的编译过程中不包含传统编译中的连接步骤,一切方法调用在Class文件里面存储的都只是符号引用,而不是方法在实际 ...

  8. python变量作用域,函数与传参

    一.元组传值: 一般情况下函数传递参数是1对1,这里x,y是2个参数,按道理要传2个参数,如果直接传递元祖,其实是传递一个参数 >>> def show( x, y ): ... p ...

  9. php面向对象精要(1)

    1.静态属性与方法 每一个类的实例拥有自己的属性和方法,每一个类也可以包含静态属性,静态属性不属于类的任何实例,可以把静态属性理解成存储在类中的全局变量,可以在任何地方通过类名引用静态属性. < ...

  10. 【学习笔记】--- 老男孩学Python,day6 字典

    详细方法:http://www.runoob.com/python/python-dictionary.html 1. dict 用大括号{} 括起来. 内部使用key:value的形式来保存数据 { ...