BZOJ 1834 网络扩容 最大流+最小费用流
题目链接:
https://www.lydsy.com/JudgeOnline/problem.php?id=1834
题目大意:
思路:
第一问直接求费用流,第二问,在第一问的残余网络上,对于每条边额外加上INF容量费用为w的边,限制最大流量为k,也就是在0-1之间连边,容量为s,费用为0,然后跑一遍最小费用流就可以了。
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);//不可再使用scanf printf
#define Max(a, b) ((a) > (b) ? (a) : (b))//禁用于函数,会超时
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Mem(a) memset(a, 0, sizeof(a))
#define Dis(x, y, x1, y1) ((x - x1) * (x - x1) + (y - y1) * (y - y1))
#define MID(l, r) ((l) + ((r) - (l)) / 2)
#define lson ((o)<<1)
#define rson ((o)<<1|1)
#define Accepted 0
#pragma comment(linker, "/STACK:102400000,102400000")//栈外挂
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
typedef long long ll;
const int MOD = ;//const引用更快,宏定义也更快
const double eps = 1e-;
const double pi = acos(-);
const int INF = 0x3f3f3f3f;
const int maxn = + ;
struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost):u(u), v(v), c(c), f(f), cost(cost){}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中 void addedge(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, long long & cost)
{
for(int i = ; i <= t + ; i++)d[i] = INF;//Bellman算法的初始化
memset(inq, , sizeof(inq));
d[s] = ;inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ;a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for(int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if(now.c > now.f && d[v] > d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if(!inq[v]){q.push(v);inq[v] = ;}//Bellman 算法入队
}
}
}
if(d[t] == INF)return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for(int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int MincostMaxflow(int s, int t, long long & cost)
{
cost = ;
int flow = ;
while(bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
int u[maxn], v[maxn], c[maxn], w[maxn];
int main()
{
IOS;
int n, m, k;
cin >> n >> m >> k;
for(int i = ; i <= m; i++)cin >> u[i] >> v[i] >> c[i] >> w[i];
for(int i = ; i <= m; i++)addedge(u[i], v[i], c[i], );
ll cost;
cout<<MincostMaxflow(, n, cost)<<" ";
addedge(, , k, );
addedge(n, n + , k, );
for(int i = ; i <= m; i++)addedge(u[i], v[i], INF, w[i]);
MincostMaxflow(, n + , cost);
cout<<cost<<endl;
return Accepted;
}
BZOJ 1834 网络扩容 最大流+最小费用流的更多相关文章
- BZOJ 1834 网络扩容(最大流+费用流)
对于第一问,直接求最大流. 对于第二问,建源点s和汇点t,s连1容量为INF,费用为0的边,n连t容量为最大流+k,费用为0的边.这样就把最大流限制为最多增加k了. 限制需要求扩充的最小费用,原图的边 ...
- 【BZOJ1834】[ZJOI2010]network 网络扩容 最大流+最小费用流
[BZOJ1834][ZJOI2010]network 网络扩容 Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不 ...
- BZOJ 1834网络扩容题解
一道不算太难的题目 但是真的很恶心 显然,对于第一问,我们直接无脑打模板就好了 第二问也不是很难,我们将每条边再连一条容量为inf,费用为w的边 但是流量只要小于第一问的答案加k就行了 所以我们增加一 ...
- BZOJ 1834: [ZJOI2010]network 网络扩容(最大流+最小费用最大流)
第一问直接跑最大流.然后将所有边再加一次,费用为扩容费用,容量为k,再从一个超级源点连一条容量为k,费用为0的边到原源点,从原汇点连一条同样的边到超级汇点,然 后跑最小费用最大流就OK了. ---- ...
- bzoj 1834: [ZJOI2010]network 网络扩容 -- 最大流+费用流
1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec Memory Limit: 64 MB Description 给定一张有向图,每条边都有一个容量C和一 ...
- BZOJ 1834--网络扩容(最大流&费用流)
1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 3351 Solved: 1750[Submit ...
- [BZOJ1834][ZJOI2010]network 网络扩容 最大流+费用流
1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec Memory Limit: 64 MB Submit: 3330 Solved: 1739 [Subm ...
- [ZJOI2010][bzoj1834] 网络扩容 [费用流]
题面 传送门 思路 第一问:无脑网络流跑一波 第二问: 先考虑一个贪心的结论:扩容出来的扩容流量一定要跑满 证明显然 因此我们可以把扩容费用可以换个角度思考,变成增加一点流量,花费W的费用 这样,我们 ...
- bzoj1834: [ZJOI2010]network 网络扩容 费用流
bzoj1834 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容 ...
随机推荐
- 数据库中存储日期的字段类型到底应该用varchar还是datetime
将数据库中存储时间的数据类型改为varchar(),这时最好让这些时间是数据库中自动生成的(一个没有格式的输入也可能会导致输出错误),因为存储类型为varchar(),所以获取到的值也就被认为是一个字 ...
- 使用spring security 2.0 和extjs 3.0实现web登录
使用spring security 2.0 和extjs 3.0实现web登录 1开发环境说明 本例使用MyEclipse 6.5作为开发工具,jdk1.5作为编译工具,tomcat6.0作为web运 ...
- CSS学习笔记02 CSS选择器
1.通配符选择器 通配符选择器用“*"号表示,是所有选择器中作用范围最广的,能匹配页面中所有的元素 /*设置当前页面中所有标签的颜色为红色*/ * { color: red; } 2.标签选 ...
- Weex 实现文件的下载
需求:在使用weex框架时,我们使用vue文件写页面,在native端加载服务器端的js页面时由于网络状态的不确定性,我们需要在第一次加载的时候对js页面进行本地存储.也就是说我们需要把js文件下载到 ...
- 放苹果(poj1664递归)
ti放苹果 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24392 Accepted: 15513 Descripti ...
- 修改VS类模板自动添加public修饰符和版权注释信息
在开发过程中,我们经常需要给类或接口添加public修饰符(默认没有)和一些相关的注释信息,这个工作是机械而枯燥的,而这个简单的需求其实是可以通过修改VS自带的类模板来实现的,下面是详细的修改步骤. ...
- js-ES6学习笔记-编程风格(2)
1.那些需要使用函数表达式的场合,尽量用箭头函数代替.因为这样更简洁,而且绑定了this. 2.所有配置项都应该集中在一个对象,放在最后一个参数,布尔值不可以直接作为参数. 3.不要在函数体内使用ar ...
- 【代码笔记】iOS-performSelector
代码: - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view. se ...
- 从零开始学习html(十)CSS格式化排版——上
一.文字排版--字体 <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type&qu ...
- 在ASP.NET MVC 中使用ActiveReports报表控件
随着MVC模式的广泛运用,对Web应用系统的开发带来了巨大的影响,我们好像又回到了原来的ASP时代,视乎这是一种后退而不是一种进步,不过MVC模式给我们带来的影响不仅限于我们所看到的这一点..MVC看 ...