一、以下是我要解析的一个二叉树的模型形状。本文实现了以下方式的遍历:

1、用递归的方法实现了前序、中序、后序的遍历;

2、利用队列的方法实现层次遍历;

3、用堆栈的方法实现前序、中序、后序的遍历。

二、遍历

1、首先创建节点类

public class Node {
private int data;
private Node leftNode;
private Node rightNode;
public Node(int data, Node leftNode, Node rightNode){
this.data = data;
this.leftNode = leftNode;
this.rightNode = rightNode;
} public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
}
public Node getLeftNode() {
return leftNode;
}
public void setLeftNode(Node leftNode) {
this.leftNode = leftNode;
}
public Node getRightNode() {
return rightNode;
}
public void setRightNode(Node rightNode) {
this.rightNode = rightNode;
}
}

2、递归方式实现前序、中序、后续遍历

public class BinaryTree {
/**
* @author yaobo
* 二叉树的先序中序后序排序
*/
public Node init() {//注意必须逆序建立,先建立子节点,再逆序往上建立,因为非叶子结点会使用到下面的节点,而初始化是按顺序初始化的,不逆序建立会报错
Node J = new Node(8, null, null);
Node H = new Node(4, null, null);
Node G = new Node(2, null, null);
Node F = new Node(7, null, J);
Node E = new Node(5, H, null);
Node D = new Node(1, null, G);
Node C = new Node(9, F, null);
Node B = new Node(3, D, E);
Node A = new Node(6, B, C);
return A; //返回根节点
} public void printNode(Node node){
System.out.print(node.getData());
}
public void theFirstTraversal(Node root) { //先序遍历
printNode(root);
if (root.getLeftNode() != null) { //使用递归进行遍历左孩子
theFirstTraversal(root.getLeftNode());
}
if (root.getRightNode() != null) { //递归遍历右孩子
theFirstTraversal(root.getRightNode());
}
}
public void theInOrderTraversal(Node root) { //中序遍历
if (root.getLeftNode() != null) {
theInOrderTraversal(root.getLeftNode());
}
printNode(root);
if (root.getRightNode() != null) {
theInOrderTraversal(root.getRightNode());
}
} public void thePostOrderTraversal(Node root) { //后序遍历
if (root.getLeftNode() != null) {
thePostOrderTraversal(root.getLeftNode());
}
if(root.getRightNode() != null) {
thePostOrderTraversal(root.getRightNode());
}
printNode(root);
} public static void main(String[] args) {
BinaryTree tree = new BinaryTree();
Node root = tree.init();
System.out.println("先序遍历");
tree.theFirstTraversal(root);
System.out.println("");
System.out.println("中序遍历");
tree.theInOrderTraversal(root);
System.out.println("");
System.out.println("后序遍历");
tree.thePostOrderTraversal(root);
System.out.println("");
}
}

3、借助队列实现层次遍历

//层次遍历
public void theLeverTraversal(Node root) {
if (root == null) {
return;
}
//新建一个队列,LinkedList实现了Quene接口,可以直接当作队列来用
LinkedList<Node> queue = new LinkedList<Node>(); Node current; //当前节点
queue.offer(root);//根节点入队列 while (!queue.isEmpty()) {
current = queue.poll(); //取出队列的头节点
System.out.print(current.val + " ");//输出队列的头节点的值
if (current.left != null) {
queue.offer(current.left); //如果当前节点的左节点不为空,则左节点入队列
}
if (current.right != null) {
queue.offer(current.right); //如果当前节点的右节点不为空,则右节点入队列
}
}
}

4、堆栈方式实现前序、中序、后续遍历

public class BinaryTree1 {
public Node init() {//注意必须逆序建立,先建立子节点,再逆序往上建立,因为非叶子结点会使用到下面的节点,而初始化是按顺序初始化的,不逆序建立会报错
Node J = new Node(8, null, null);
Node H = new Node(4, null, null);
Node G = new Node(2, null, null);
Node F = new Node(7, null, J);
Node E = new Node(5, H, null);
Node D = new Node(1, null, G);
Node C = new Node(9, F, null);
Node B = new Node(3, D, E);
Node A = new Node(6, B, C);
return A; //返回根节点
} public void printNode(Node node){
System.out.print(node.getData());
} public void theFirstTraversal_Stack(Node root) { //先序遍历
Stack<Node> stack = new Stack<Node>();
Node node = root;
while (node != null || stack.size() > 0) { //将所有左孩子压栈
if (node != null) { //压栈之前先访问
printNode(node);
stack.push(node);
node = node.getLeftNode();
} else {
node = stack.pop();
node = node.getRightNode();
}
}
} public void theInOrderTraversal_Stack(Node root) { //中序遍历
Stack<Node> stack = new Stack<Node>();
Node node = root;
while (node != null || stack.size() > 0) {
if (node != null) {
stack.push(node); //直接压栈
node = node.getLeftNode();
} else {
node = stack.pop(); //出栈并访问
printNode(node);
node = node.getRightNode();
}
}
} public void thePostOrderTraversal_Stack(Node root) { //后序遍历
Stack<Node> stack = new Stack<Node>();
Stack<Node> output = new Stack<Node>();//构造一个中间栈来存储逆后序遍历的结果
Node node = root;
while (node != null || stack.size() > 0) {
if (node != null) {
output.push(node);
stack.push(node);
node = node.getRightNode();
} else {
node = stack.pop();
node = node.getLeftNode();
}
}
System.out.println(output.size());
while (output.size() > 0) { printNode(output.pop());
}
} public static void main(String[] args) {
BinaryTree1 tree = new BinaryTree1();
Node root = tree.init();
System.out.println("先序遍历");
tree.theFirstTraversal_Stack(root);
System.out.println("");
System.out.println("中序遍历");
tree.theInOrderTraversal_Stack(root);
System.out.println("");
System.out.println("后序遍历");
tree.thePostOrderTraversal_Stack(root);
System.out.println("");
}
}

-------------------------------------------------------------------------------------------------------------------------

参考链接:

http://www.cnblogs.com/yaobolove/p/6213936.html

二叉树遍历(前序、中序、后序、层次、深度优先、广度优先遍历):https://blog.csdn.net/yimingsilence/article/details/54783208

Java实现二叉树先序,中序,后序,层次遍历的更多相关文章

  1. 分别求二叉树前、中、后序的第k个节点

    一.求二叉树的前序遍历中的第k个节点 //求先序遍历中的第k个节点的值 ; elemType preNode(BTNode *root,int k){ if(root==NULL) return ' ...

  2. [Java]算术表达式求值之二(中序表达式转后序表达式方案,支持小数)

    Inlet类,入口类,这个类的主要用途是验证用户输入的算术表达式: package com.hy; import java.io.BufferedReader; import java.io.IOEx ...

  3. [Java]算术表达式求值之一(中序表达式转后序表达式方案)

    第二版请见:https://www.cnblogs.com/xiandedanteng/p/11451359.html 入口类,这个类的主要用途是粗筛用户输入的算术表达式: package com.h ...

  4. 前、中、后序遍历随意两种是否能确定一个二叉树?理由? && 栈和队列的特点和区别

    前序和后序不能确定二叉树理由:前序和后序在本质上都是将父节点与子结点进行分离,但并没有指明左子树和右子树的能力,因此得到这两个序列只能明确父子关系,而不能确定一个二叉树. 由二叉树的中序和前序遍历序列 ...

  5. 已知树的前序、中序,求后序的java实现&已知树的后序、中序,求前序的java实现

    public class Order { int findPosInInOrder(String str,String in,int position){ char c = str.charAt(po ...

  6. DS Tree 已知先序、中序 => 建树 => 求后序

    参考:二叉树--前序和中序得到后序 思路历程: 在最初敲的时候,经常会弄混preorder和midorder的元素位置.大体的思路就是在preorder中找到根节点(根节点在序列的左边),然后在mid ...

  7. TZOJ 3209 后序遍历(已知中序前序求后序)

    描述 在数据结构中,遍历是二叉树最重要的操作之一.所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问. 这里给出三种遍历算法. 1.中序遍历的递归算法定义:  ...

  8. java 根据二叉树前序 ,中序求后续

    在一棵二叉树总,前序遍历结果为:ABDGCEFH,中序遍历结果为:DGBAECHF,求后序遍历结果. 我们知道: 前序遍历方式为:根节点->左子树->右子树 中序遍历方式为:左子树-> ...

  9. hdu1710-Binary Tree Traversals (由二叉树的先序序列和中序序列求后序序列)

    http://acm.hdu.edu.cn/showproblem.php?pid=1710 Binary Tree Traversals Time Limit: 1000/1000 MS (Java ...

  10. LeetCode:二叉树的前、中、后序遍历

    描述: ------------------------------------------------------- 前序遍历: Given a binary tree, return the pr ...

随机推荐

  1. boost--ref

    1.ref简介 reference_wrapper包含在ref库中,它是引用包装器类型,即其内部包装了引用. 成员函数get().get_pointer()分别可以获得被包装的引用和其指针.使用需要包 ...

  2. Methods to reduce the number of pipeline stages

    Several techniques have been proposed to reduce the number of pipeline stages. We categorize them in ...

  3. Architecture

    SMART Crossbar The SMART crossbar is the primary building block in a SMART NoC that enables straight ...

  4. openstack的Host Aggregates和Availability Zones

    1.关系 Availability Zones 通常是对 computes 节点上的资源在小的区域内进行逻辑上的分组和隔离.例如在同一个数据中心,我们可以将 Availability Zones 规划 ...

  5. c# 动态数组-----“动态”数组

    其实在大多数工作中我们能通过前处理来确定我们的数组有多大,这样我们就可以声明相应大小的数组了.我感觉这种“动态”数组就够我用了.比如我要处理excel中数据,数据有m行*n列,这样我就可以通过读取ex ...

  6. AngularJS的$location基本用法和注意事项

    一.配置config app.config([ '$locationProvider', function($locationProvider) { $locationProvider.html5Mo ...

  7. How to fix "FAILURE DURING CONVERSION TO COFF: FILE INVALID OR CORRUPT"

    Error LINK : fatal error LNK1123: failure during conversion to COFF: file invalid or corrupt appear ...

  8. linux 查询搜索文件指令

    一.which(寻找[执行档]) 二.whereis(由一些特定的目录中寻找文件文件名) 三.locate/updatedb 四.find 个人记录方便自用

  9. W-TinyLFU——设计一个现代的缓存

    缓存设计是个基础架构领域里的重要话题,本号之前也有谈论过相关话题,点击原文可以看之前的介绍. 近日,HighScalability网站刊登了一篇文章,由前Google工程师发明的W-TinyLFU—— ...

  10. yum改成网易的源

    用网易的源会快很多,步骤如下:http://mirrors.163.com/.help/centos.html 1.首先备份/etc/yum.repos.d/CentOS-Base.repo mv / ...