第四章 PCA降维
目录
1. PCA降维
PCA:主成分分析(Principe conponents Analysis)
2. 维度的概念
一般认为时间的一维,而空间的维度,众说纷纭。霍金认为空间是10维的。
3. 为什么要进行降维?
维度灾难:当维度超过一定值的时候,分类器效果呈现明显下降。
PCA旨在找到数据中的主成分,并利用这些主成分表征原始数据,从而达到降维的目的。举一个简单的例子,在三维空间中有一系列数据点,这些点分布在一个过原点的平面上。如果我们用自然坐标系x,y,z三个轴来表示数据,就需要使用三个维度。而实际上,这些点只出现在一个二维平面上,如果我们通过坐标系旋转变换使得数据所在平面与x,y平面重合,那么我们就可以通过x,y两个维度表达原始数据,并且没有任何损失,这样就完成了数据的降维。而x,y两个轴所包含的信息就是我们要找到的主成分。
4. 目标
提取最有价值的信息(基于方差)
5. 降维后的数据的意义?
降维后物理意义变得模糊,但是不影响我们去后续做分类、预测等的结果。
6. PCA推导过程
7. 结论
- 我们要找最大的方差也就是协方差矩阵最大的特征值;
- 最佳投影方向就是最大特征值对应的特征向量
- 次佳投影方向位于最佳投影方向的正交空间中,是第二大特征值对应的特征向量
求解步骤:
- 对样本数据进行中心化处理
- 求协方差矩阵
- 对协方差矩阵进行特征值分解,将特征值从到小排列
- 取特征值前d大对应的特征向量w1, w2, ..., wd。通过映射关系将n维样本映射到d维空间。
降维后的信息占比定义为:
第四章 PCA降维的更多相关文章
- 第十四章:降维:奇异值分解SVD
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...
- 《机器学习实战》学习笔记第十四章 —— 利用SVD简化数据
相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习( ...
- R in action读书笔记(19)第十四章 主成分和因子分析
第十四章:主成分和因子分析 本章内容 主成分分析 探索性因子分析 其他潜变量模型 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分.探索性因 ...
- 【机器学习】--主成分分析PCA降维从初识到应用
一.前述 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. ...
- Python机器学习笔记 使用scikit-learn工具进行PCA降维
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多 ...
- PCA降维笔记
PCA降维笔记 一个非监督的机器学习算法 主要用于数据的降维 通过降维, 可以发现更便 于人类理解的特征 其他应用:可视化:去噪 PCA(Principal Component Analysis)是一 ...
- sklearn pca降维
PCA降维 一.原理 这篇文章总结的不错PCA的数学原理. PCA主成分分析是将原始数据以线性形式映射到维度互不相关的子空间.主要就是寻找方差最大的不相关维度.数据的最大方差给出了数据的最重要信息. ...
随机推荐
- PHP函数gmstrftime()将秒数转换成天时分秒
http://yangjunwei.com/a/930.html PHP函数gmstrftime()将秒数转换成天时分秒 一个应用场景需要用到倒计时的时分秒,比如新浪微博授权有效期剩余: 7天16 ...
- mysql重装之后 复制data
(哇,编程小白的第一篇博客丫,激动) Q one:mysql需要重装,数据该怎么办. 方法一:数据表最好是导出成.sql文件,这样才比较安全. 方法二:直接copy了data文件:在mysql安装盘下 ...
- 第07章:MongoDB-CRUD操作--文档--创建
①语法 insert() save() --有修改没有新增 insertOne() [3.2版本新增]向指定集合中插入一条文档数据 insertMany() [3.2版本新增]向指定集合中插入多条文 ...
- UVa 11021 Tribles (概率DP + 组合数学)
题意:有 k 只小鸟,每只都只能活一天,但是每只都可以生出一些新的小鸟,生出 i 个小鸟的概率是 Pi,问你 m 天所有的小鸟都死亡的概率是多少. 析:先考虑只有一只小鸟,dp[i] 表示 i 天全部 ...
- 1071 Speech Patterns
People often have a preference among synonyms of the same word. For example, some may prefer "t ...
- (转)memcached注意事项
转自:http://www.kaifajie.cn/kaiyuan_qita/8656.html 1. key值最大长度? memcached的key的最大长度是250个字符. 注意250是mem ...
- x11 VNC远程桌面
Ubuntu远程桌面,类似于qq远程桌面(Ubuntu没有内置桌面系统吗?) $ sudo apt-get update $ sudo apt-get install x11vnc $ x11vnc ...
- (多线程dp)Matrix (hdu 2686)
http://acm.hdu.edu.cn/showproblem.php?pid=2686 Problem Description Yifenfei very like play a num ...
- input.php
<?php /** * */ class Input { function get($index = NULL, $xss_clean = FALSE) { if($index == NULL ...
- python 的 字节码 导入使用
1. python 模块文件可以通过编译为字节码的形式: 名字:model.py x = def funt(): import model print(model.x) x = "zhang ...