Kafka 0.8 sever:源代码High level分析
本文主要介绍了Kafka High level的代码架构和主要的类。
这张图是0.8版本的架构

Boker 架构
1 network layer
Kafka使用NIO自己实现了网络层的代码, 而不是采用netty, mina等第三方的网络框架。从性能上来讲,这一块的代码不是性能的瓶颈。
它采用IO多路复用和多线程下的Reactor模式,主要实现类包括SocketServer, Acceptor, Processor和RequestChannel。
Kafka的服务器由SocketServer实现,它是一个NIO的服务器,线程模型如下:
- 1个Acceptor线程负责处理新连接
- N个Processor线程, 每个processor都有自己的selector,负责从socket中读取请求和发送response
- M个Handler线程处理请求,并产生response给processor线程
可以从上面的图形中看到Acceptor, Processor和Handler的功能。
1.1 a. Boker在启动的时候会调用SocketServer的startup方法。
def startup() {
......
for(i <- 0 until numProcessorThreads) {
processors(i) = new Processor(i,
time,
maxRequestSize,
aggregateIdleMeter,
newMeter("IdlePercent", "percent", TimeUnit.NANOSECONDS, Map("networkProcessor" -> i.toString)),
numProcessorThreads,
requestChannel,
quotas,
connectionsMaxIdleMs)
Utils.newThread("kafka-network-thread-%d-%d".format(port, i), processors(i), false).start()
}
......
// start accepting connections
this.acceptor = new Acceptor(host, port, processors, sendBufferSize, recvBufferSize, quotas)
Utils.newThread("kafka-socket-acceptor-%s-%d".format(protocol.toString, endpoint.port), acceptor, false).start()
acceptor.awaitStartup
......
}
1.2 b. 它为每个Processor生成一个线程并启动,然后启动一个Acceptor线程。
Acceptor是一个典型NIO 处理新连接的方法类:
private[kafka] class Acceptor(...) extends AbstractServerThread(connectionQuotas) {
val serverChannel = openServerSocket(host, port)
def run() {
serverChannel.register(selector, SelectionKey.OP_ACCEPT);
......
while(isRunning) {
val ready = selector.select(500)
if(ready > 0) {
val keys = selector.selectedKeys()
val iter = keys.iterator()
while(iter.hasNext && isRunning) {
......
accept(key, processors(currentProcessor))
......
currentProcessor = (currentProcessor + 1) % processors.length
}
}
}
......
}
}
1.3 c. 它会将新的连接均匀地分配给一个Processor。通过accept方法配置网络参数,并交给processor读写数据。
def accept(key: SelectionKey, processor: Processor) {
val serverSocketChannel = key.channel().asInstanceOf[ServerSocketChannel]
val socketChannel = serverSocketChannel.accept()
try {
connectionQuotas.inc(socketChannel.socket().getInetAddress)
socketChannel.configureBlocking(false)
socketChannel.socket().setTcpNoDelay(true)
socketChannel.socket().setSendBufferSize(sendBufferSize)
processor.accept(socketChannel)
} catch {
case e: TooManyConnectionsException =>
info("Rejected connection from %s, address already has the configured maximum of %d connections.".format(e.ip, e.count))
close(socketChannel)
}
}
1.4 d. Processor的accept方法将新连接加入它的新连接待处理队列中
在configureNewConnections方法中注册OP_READ。
def accept(socketChannel: SocketChannel) {
newConnections.add(socketChannel)
wakeup()
}
private def configureNewConnections() {
while(newConnections.size() > 0) {
val channel = newConnections.poll()
debug("Processor " + id + " listening to new connection from " + channel.socket.getRemoteSocketAddress)
channel.register(selector, SelectionKey.OP_READ)
}
}
1.5 e. Processor线程的主处理逻辑如下, 这是一个死循环,会一直处理这些连接的读写
override def run() {
startupComplete()
while (isRunning) {
try {
// setup any new connections that have been queued up // 为新连接注册OP_READ
configureNewConnections()
// register any new responses for writing
// 为新的response注册OP_WRITE, 它从requestChannel.receiveResponse(processor's id)读取response
processNewResponses()
poll()
processCompletedReceives()
processCompletedSends()
processDisconnected()
} catch {
...
}
}
debug("Closing selector - processor " + id)
swallowError(closeAll())
shutdownComplete()
}
这也是一个标准的NIO的处理代码。
1.6 f. 我们看看read和write是怎么实现的。<这个和0.10的代码对应不上,这个类是修改了的。>
因为Kafka的消息前四个字节代表(一个int)为后续消息的size,所以首先读取size,接着把一个完整的消息读取出来。
如果读取出来一个完整的Request,则将它放到requestChannel中。
具体的Kafka消息的格式可以参考 A Guide To The Kafka Protocol
我们再看看write方法的实现, 直到写完一个response,才讲Ops设为OP_READ,否则一直尝试写。
以上是网络层的主要代码逻辑,主要负责Kafka消息的读写。
2.API layer
API层的主要功能是由KafkaApis类实现的。
根据配置Kafka生成了一组KafkaRequestHandler线程,叫做KafkaRequestHandlerPool:
class KafkaRequestHandlerPool(......) extends Logging with KafkaMetricsGroup {
......
val threads = new Array[Thread](numThreads)
val runnables = new Array[KafkaRequestHandler](numThreads)
for(i <- 0 until numThreads) {
runnables(i) = new KafkaRequestHandler(i, brokerId, aggregateIdleMeter, numThreads, requestChannel, apis)
threads(i) = Utils.daemonThread("kafka-request-handler-" + i, runnables(i))
threads(i).start()
}
.....
}
KafkaRequestHandler不断的从requestChannel队列里面取出request交给apis处理。
class KafkaRequestHandler(......) extends Runnable with Logging {
def run() {
while(true) {
try {
var req : RequestChannel.Request = null
while (req == null) {
req = requestChannel.receiveRequest(300)
}
if(req eq RequestChannel.AllDone) {
return
}
......
apis.handle(req)
} catch {
......
}
}
}
}
apis根据不同的请求类型调用不同的方法进行处理。
def handle(request: RequestChannel.Request) {
try{
request.requestId match {
case RequestKeys.ProduceKey => handleProducerRequest(request)
case RequestKeys.FetchKey => handleFetchRequest(request)
case RequestKeys.OffsetsKey => handleOffsetRequest(request)
case RequestKeys.MetadataKey => handleTopicMetadataRequest(request)
case RequestKeys.LeaderAndIsrKey => handleLeaderAndIsrRequest(request)
case RequestKeys.StopReplicaKey => handleStopReplicaRequest(request)
case RequestKeys.UpdateMetadataKey => handleUpdateMetadataRequest(request)
case RequestKeys.ControlledShutdownKey => handleControlledShutdownRequest(request)
case RequestKeys.OffsetCommitKey => handleOffsetCommitRequest(request)
case RequestKeys.OffsetFetchKey => handleOffsetFetchRequest(request)
case RequestKeys.ConsumerMetadataKey => handleConsumerMetadataRequest(request)
case RequestKeys.JoinGroupKey => handleJoinGroupRequest(request)
case RequestKeys.HeartbeatKey => handleHeartbeatRequest(request)
case requestId => throw new KafkaException("Unknown api code " + requestId)
}
} catch {
} finally
request.apiLocalCompleteTimeMs = SystemTime.milliseconds
}
显然,此处处理的速度影响Kafka整体的消息处理的速度。
这里我们分析一个处理方法handleProducerRequest。
def handleProducerRequest(request: RequestChannel.Request) {
val produceRequest = request.body.asInstanceOf[ProduceRequest]
val numBytesAppended = request.header.sizeOf + produceRequest.sizeOf
val (authorizedRequestInfo, unauthorizedRequestInfo) = produceRequest.partitionRecords.asScala.partition {
case (topicPartition, _) => authorize(request.session, Write, new Resource(Topic, topicPartition.topic))
}
// the callback for sending a produce response
def sendResponseCallback(responseStatus: Map[TopicPartition, PartitionResponse]) {
}
if (authorizedRequestInfo.isEmpty)
sendResponseCallback(Map.empty)
else {
val internalTopicsAllowed = request.header.clientId == AdminUtils.AdminClientId
// Convert ByteBuffer to ByteBufferMessageSet
val authorizedMessagesPerPartition = authorizedRequestInfo.map {
case (topicPartition, buffer) => (topicPartition, new ByteBufferMessageSet(buffer))
}
// call the replica manager to append messages to the replicas
replicaManager.appendMessages(
produceRequest.timeout.toLong,
produceRequest.acks,
internalTopicsAllowed,
authorizedMessagesPerPartition,
sendResponseCallback)
// if the request is put into the purgatory, it will have a held reference
// and hence cannot be garbage collected; hence we clear its data here in
// order to let GC re-claim its memory since it is already appended to log
produceRequest.clearPartitionRecords()
}
}
这里会调用replicaManager.appendMessages处理Kafka message的保存和备份,也就是leader和备份节点上。
3.Replication subsystem
我们进入replicaManager.appendMessages的代码。
这个方法会将消息放到leader分区上,并复制到备份分区上。在超时或者根据required acks的值及时返回response。
def appendMessages(......) {
if (isValidRequiredAcks(requiredAcks)) {
val localProduceResults = appendToLocalLog(internalTopicsAllowed, messagesPerPartition, requiredAcks)
val produceStatus = localProduceResults.map { case (topicAndPartition, result) =>
topicAndPartition ->
ProducePartitionStatus(
result.info.lastOffset + 1, // required offset
ProducerResponseStatus(result.errorCode, result.info.firstOffset)) // response status
}
if (delayedRequestRequired(requiredAcks, messagesPerPartition, localProduceResults)) {
// create delayed produce operation
val produceMetadata = ProduceMetadata(requiredAcks, produceStatus)
val delayedProduce = new DelayedProduce(timeout, produceMetadata, this, responseCallback)
// create a list of (topic, partition) pairs to use as keys for this delayed produce operation
val producerRequestKeys = messagesPerPartition.keys.map(new TopicPartitionOperationKey(_)).toSeq
// try to complete the request immediately, otherwise put it into the purgatory
// this is because while the delayed produce operation is being created, new
// requests may arrive and hence make this operation completable.
delayedProducePurgatory.tryCompleteElseWatch(delayedProduce, producerRequestKeys)
} else {
// we can respond immediately
val produceResponseStatus = produceStatus.mapValues(status => status.responseStatus)
responseCallback(produceResponseStatus)
}
} else {
// If required.acks is outside accepted range, something is wrong with the client
// Just return an error and don't handle the request at all
val responseStatus = messagesPerPartition.map {
case (topicAndPartition, messageSet) =>
(topicAndPartition ->
ProducerResponseStatus(Errors.INVALID_REQUIRED_ACKS.code,
LogAppendInfo.UnknownLogAppendInfo.firstOffset))
}
responseCallback(responseStatus)
}
}
注意复制是ReplicaFetcherManager通过ReplicaFetcherThread线程完成的。
To publish a message to a partition, the client first finds the leader of the partition from Zookeeper and sends the message to the leader. The leader writes the message to its local log. Each follower constantly pulls new messages from the leader using a single socket channel. That way, the follower receives all messages in the same order as written in the leader. The follower writes each received message to its own log and sends an acknowledgment back to the leader. Once the leader receives the acknowledgment from all replicas in ISR, the message is committed. The leader advances the HW and sends an acknowledgment to the client. For better performance, each follower sends an acknowledgment after the message is written to memory. So, for each committed message, we guarantee that the message is stored in multiple replicas in memory. However, there is no guarantee that any replica has persisted the commit message to disks though. Given that correlated failures are relatively rare, this approach gives us a good balance between response time and durability. In the future, we may consider adding options that provide even stronger guarantees. The leader also periodically broadcasts the HW to all followers. The broadcasting can be piggybacked on the return value of the fetch requests from the followers. From time to time, each replica checkpoints its HW to its disk.
4. Log subsystem
LogManager负责管理Kafka的Log(Kafka消息), 包括log/Log文件夹的创建,获取和清理。它也会通过定时器检查内存中的log是否要缓存到磁盘中。
重要的类包括LogManager(@threadsafe)和Log。
5.offsetManager
负责管理offset,提供offset的读写。(kafka.client.ClientUtils#channelToOffsetManager)
6.DynamicConfigManager
它负责动态改变Topic\Client的配置属性。(已经改成了kafka.server.DynamicConfigManager,)
如果某个topic的配置属性改变了,Kafka会在ZooKeeper上创建一个类似/kafka10/config/changes/config_change_13321的节点, DynamicConfigManager会监控这些节点, 获得属性改变的topics并处理.
7.其它类
还有一些其它的重要的类, 包括KafkaController, KafkaScheduler,ConsumerCoordinator,KafkaHealthcheck等。
将这四个类都做一遍解析。
二、Metrics
kafka/metrics,Kafka使用metrics进行性能的度量。原先是yammer metrics,现在独立成dropwizard metrics.目前这个框架的package名字比较乱,但是性能监控的功能却是非常的强大。
三、Producer
0.8版本(可能是线程安全)
0.8版本的kafka.producer.Producer定义了两种类型的Producer:
- sync
- async
- 基本上都是通过
eventHandler.handle(messages)处理消息, 只不过async会通过一个线程, 以LinkedBlockingQueue为缓冲发送消息。
0.10 版本(线程安全)
The producer is thread safe and sharing a single producer instance across threads will generally be faster than having multiple instances.
send方法是异步的,batch.size是缓存partition的大小,每个partition对应一个batch size。linger.ms是Producer用来等待批量数据的到来的时间,在这个时间内,它期待有新的数据到来。我的理解是这是一个超时的时间用来控制发送条件的。(1. 消息达到batch 2.时间超时)buffer.memory代表Producer缓存的所有partition的内存大小。这个buffer是Producer端的,如果填满,将阻塞这么长的时间max.block.ms。超过这个时间,如果buffer仍然是full的,将抛出TimeoutExeception
证实:0.10版本Producer send只有异步的,没有同步的方法。就算在send之后里面调用get()方法,也就是模拟阻塞,并不是同步。(区分好 异步阻塞、异步非阻塞)
四、Consumer
0.8版本(可能,线程安全)
kafka.consumer.SimpleConsumer提供了Simple Consumer API.它通过一个BlockingChannel发送消息,接收Response完成任务。
kafka.javaapi.consumer.SimpleConsumer则提供了java接口。
High level consumer实际由ZookeeperConsumerConnector完成,它将consumer信息记录在zookeeper中,提供KafkaStream获取Kafka消息。
OLS中对Consumer的使用是一个Consumer示例,创建了多线程去读取Consumer的List<KafkaStream<byte[], byte[]>的。
0.10版本(线程不安全)
Consumer 通过方法poll 拉取数据。提交Consumer Offset的方法如下:(后面两种是手动管理的Offset)
- 自动提交
- 阻塞提交:commitSync
- 非阻塞提交:commitAsync
官方的代码 还没看文档。下次看看 2016-11-08
Kafka 0.8 sever:源代码High level分析的更多相关文章
- Kafka 0.10 SocketServer源代码分析
1概要设计 Kafka SocketServer是基于Java NIO来开发的,采用了Reactor的模式,其中包含了1个Acceptor负责接受客户端请求,N个Processor负责读写数据,M个H ...
- kafka 0.8.1 新producer 源码简单分析
1 背景 最近由于项目需要,需要使用kafka的producer.但是对于c++,kafka官方并没有很好的支持. 在kafka官网上可以找到0.8.x的客户端.可以使用的客户端有C版本客户端,此客户 ...
- Kafka 0.10 KafkaConsumer流程简述
ConsumerConfig.scala 储存Consumer的配置 按照我的理解,0.10的Kafka没有专门的SimpleConsumer,仍然是沿用0.8版本的. 1.从poll开始 消费的规则 ...
- kafka C客户端librdkafka producer源码分析
from:http://www.cnblogs.com/xhcqwl/p/3905412.html kafka C客户端librdkafka producer源码分析 简介 kafka网站上提供了C语 ...
- es6-promise源代码重点难点分析
摘要 vue和axios都可以使用es6-promise来实现f1().then(f2).then(f3)这样的连写形式,es6-promise其实现代浏览器已经支持,无需加载外部文件.由于promi ...
- AXIOS源代码重点难点分析
摘要 vue使用axios进行http通讯,类似jquery/ajax的作用,类似angular http的作用,axios功能强大,使用方便,是一个优秀的http软件,本文旨在分享axios源代码重 ...
- Kafka 0.11.0.0 实现 producer的Exactly-once 语义(官方DEMO)
<dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients&l ...
- Kafka 0.11.0.0 实现 producer的Exactly-once 语义(中文)
很高兴地告诉大家,具备新的里程碑意义的功能的Kafka 0.11.x版本(对应 Confluent Platform 3.3)已经release,该版本引入了exactly-once语义,本文阐述的内 ...
- Kafka 0.11.0.0 实现 producer的Exactly-once 语义(英文)
Exactly-once Semantics are Possible: Here’s How Kafka Does it I’m thrilled that we have hit an excit ...
随机推荐
- python高并发和多线程的关系
“高并发和多线程”总是被一起提起,给人感觉两者好像相等,实则 高并发 ≠ 多线程 多线程是完成任务的一种方法,高并发是系统运行的一种状态,通过多线程有助于系统承受高并发状态的实现. 高并发是一种系 ...
- SSIS 遍历目录,把文件内容导入数据库
最近接手一个项目,程序的基本框架是:程序A导出数据,以.tsv格式存储,数据列之间以tab间隔:程序B吃文档,把数据导入到数据库中,并把处理过的文档备份/移动到指定的目录中.为了快速开发,程序B设计成 ...
- mvc5.0-路由
:first-child{margin-top:0!important}.markdown-body>:last-child{margin-bottom:0!important}.markdow ...
- .NET Core容器化开发系列(一)——Docker里面跑个.NET Core
前言 博客园中已经有很多如何在Docker里面运行ASP.NET Core的介绍了.本篇主要介绍一些细节,帮助初学的朋友更加深入地理解如何在Docker中运行ASP.NET Core. 安装Docke ...
- zabbix监控docker容器状态
前言:前段时间在部署zabbix,有个需求就是需要监控容器的状态 也就是cpu 内存 io的占用,于是就自己写了一个脚本,以及模板,在这里分享一下 嘿嘿 : ) 废话我也就不多说,直接开始 首选,za ...
- Selenium+Python自动化测试环境搭建和搭建过程遇到的问题解决
环境搭建: 第一步:安装Python 网址:https://www.python.org/ 按照如图提示安装,并且配置环境变量(安装时候选中pip会自动安装Python的包管理工具 pip,推荐选择 ...
- MySQL——约束(constraint)详解
该博客说说关于数据库中一个重要的知识点——约束 一.什么是约束约束英文:constraint 约束实际上就是表中数据的限制条件 二.约束作用表在设计的时候加入约束的目的就是为了保证表中的记录完整和有效 ...
- Ubuntu环境如何上传项目到GitHub网站?
http://blog.csdn.net/ajianyingxiaoqinghan/article/details/70544159
- 安装visual studio过程
昨天上了一天课 ,晚上回到寝室就开始装visual studio这个软件,由于室友有安装包,免去了下载软件的时间,下面是装载软件的步骤: 点击安装,就可以了,安装完显示文件包失败,还以为是哪里弄错了, ...
- ElasticSearch 2 (28) - 信息聚合系列之高层概念
ElasticSearch 2 (28) - 信息聚合系列之高层概念 摘要 和查询表达式(query DSL)一样,聚合也有一种可编辑的语法:可以根据我们的需要混合以及匹配使用独立的功能单元.这也就是 ...