The only difference between the easy and the hard versions is the maximum value of \(k\).

You are given an infinite sequence of form "112123123412345…" which consist of blocks of all consecutive positive integers written one after another. The first block consists of all numbers from \(1\) to \(1\), the second one — from \(1\) to \(2\), the third one — from \(1\) to \(3\), …, the i-th block consists of all numbers from \(1\) to \(i\).

So the first \(56\) elements of the sequence are "11212312341234512345612345671234567812345678912345678910". Elements of the sequence are numbered from one. For example, the \(1\)-st element of the sequence is \(1\), the \(3\)-rd element of the sequence is \(2\), the \(20\)-th element of the sequence is \(5\), the \(38\)-th element is \(2\), the 56-th element of the sequence is \(0\).

Your task is to answer \(q\) independent queries. In the i-th query you are given one integer ki. Calculate the digit at the position ki of the sequence.

有一个无限长的数字序列,其组成为1 1 2 1 2 3 1.......1 2 ... n...,即重复的1 ~ 1,1 ~ 2....1 ~ n,这个数列连起来成为一个串,每位数字算一个元素,求第k(k<=1e18)个元素是什么

输入格式

The first line of the input contains one integer \(q(1≤q≤500)\) — the number of queries.

The i-th of the following q lines contains one integer \(k_i (1≤k_i≤10^{18})\) — the description of the corresponding query.

输出格式

Print q lines. In the i-th line print one digit \(x_i (0≤xi≤9)\) — the answer to the query i, i.e. xi should be equal to the element at the position ki of the sequence.

样例输入1

5
1
3
20
38
56

样例输出1

1
2
5
2
0

样例输入2

4
2132
506
999999999999999999
1000000000000000000

样例输出2

8
2
4
1

题解

首先把原数列变成这样:

1
12
123
1234
12345
123456
1234567
12345678
123456789
12345678910
1234567891011
123456789101112
12345678910111213
1234567891011121314

你会发现,这个形状抽象以下就是这样:

当然每一块实际上不是等高的,这个斜边斜率之所以会改变,是因为其最后一个数字位数不同,在第一块,每一行增加一位,第二组每一行增加2位...

我们只需要事先预处理出每块含数字的数量,然后拿到\(k\)以后,进行二分就能找到\(k\)在哪一块.

那么怎么预处理呢?

首先已知:

  1. 第一块第一行是1个数字

  2. 第一块每行增加\(1\)个,第二块每行增加\(2\)个,第三行每行增加\(3\)个,第\(i\)块每行增加\(i\)个,设为\(d_i\)

  3. 第一块有\(9\)行,第二块有\(90\)行,第三块有\(900\)行,第\(i\)块有\(9 \times 10^{i-1}\),设为\(l_i\)

那就可以用等差数列求和公式预处理

注意,每一块都有自己的通项公式,描述该块内第几行有多少数字

那么现在求每一块内数字数量的问题就变成了 已知首项和公差,求前\(n\)项和.

首项由前一块的通项公式得出,公差为\(d_i\), 由\(n=l_i\)可以求出该块数字数量,保存下来.

找到在哪一块之后,\(k\)减去前面所有块的数字数量,然后二分找到哪一行,每一行的数量由该块通项公式得出.

找到在哪一行之后,进行和以上类似的操作

比如这一行是

1
12
123
1234
12345
123456
1234567
12345678
123456789
12345678910
1234567891011
123456789101112

是不是似曾相识?

又是这个图,还是分块,分成1位数,2位数,3位数若干块(若干公差不同的等差数列),找到\(k\)在哪一块,然后枚举即可.

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 10;
long long a[15], b[15], c[15], T, n;
int main() {
for (int i = 1; i <= N; i++) {
long long x = i, l = 1, r = 0;
while (x--) l *= 10, r = r * 10 + 9;
l /= 10;
a[i] = (r - l + 1) * i;
b[i] = b[i - 1] + a[i];
c[i] = c[i - 1] + (b[i - 1] + i + b[i]) * (r - l + 1) / 2;
}
scanf("%lld", &T);
while (T--) {
scanf("%lld", &n);
long long pos = lower_bound(c + 1, c + N + 1, n) - c, l = 1, r = 0,
x = pos, t;
n -= c[pos - 1];
t = b[pos - 1];
while (x--) l *= 10, r = 10 * r + 9;
l /= 10;
long long L = l;
while (l <= r) {
int mid = (l + r) >> 1, cnt = mid - L + 1;
if ((2 * t + pos + cnt * pos) * cnt / 2 >= n)
r = mid - 1;
else
l = mid + 1;
}
long long cnt = l - L;
n -= (2 * t + pos + cnt * pos) * cnt / 2;
pos = lower_bound(b + 1, b + N + 1, n) - b;
n -= b[pos - 1];
long long ans = 1;
for (long long i = 1; i < pos; i++) ans *= 10;
t = (n - 1) / pos;
n -= t * pos;
ans += t;
n = pos - n;
while (n--) ans /= 10;
printf("%lld\n", ans % 10);
}
return 0;
}

Numerical Sequence (Hard vision) 题解的更多相关文章

  1. cf1216E2 Numerical Sequence (hard version)(思维)

    cf1216E2 Numerical Sequence (hard version) 题目大意 一个无限长的数字序列,其组成为\(1 1 2 1 2 3 1.......1 2 ... n...\), ...

  2. Numerical Sequence (easy version)

    http://codeforces.com/problemset/problem/1216/E1 E1. Numerical Sequence (easy version) time limit pe ...

  3. [CF1216E] Numerical Sequence hard version

    题目 The only difference between the easy and the hard versions is the maximum value of k. You are giv ...

  4. cf1216E2 Numerical Sequence (hard version) 二分查找、思维题

    题目描述 The only difference between the easy and the hard versions is the maximum value of k. You are g ...

  5. CF1216E Numerical Sequence

    题目链接 问题分析 奇奇怪怪的题... 首先思路达成一致,从大到小一步一步确定位置. 我们一边分析,一边讲算法. 1121231234123451234561234567123456781234567 ...

  6. [CF1177B]Digits Sequence (Hard Edition)题解

    一个简单的模拟,首先先计算当前是几位数,然后根据几位数推断当前的数是什么,然后求出该位即可 #include <cstdio> int main(){ long long k; scanf ...

  7. Numerical Sequence(hard version),两次二分

    题目: 题意: 已知一个序列: 112123123412345123456123456712345678123456789123456789101234567891011... 求这个序列第k个数是多 ...

  8. 【二分】CF Round #587 (Div. 3)E2 Numerical Sequence (hard version)

    题目大意 有一个无限长的数字序列,其组成为1 1 2 1 2 3 1.......1 2 ... n...,即重复的1~1,1~2....1~n,给你一个\(k\),求第\(k(k<=10^{1 ...

  9. CF1177A Digits Sequence (Easy Edition) 题解

    Content 一个序列由从 \(1\) 开始的数字不断在末端拼接,就像这样:\(12345678910111213141516...\).现在,给定一个数字 \(k\),请输出这个序列的第 \(k\ ...

随机推荐

  1. 数据的存储结构浅析LSM-Tree和B-tree

    目录 顺序存储与哈希索引 SSTable和LSM tree B-Tree 存储结构的比对 小结 本篇主要讨论的是不同存储结构(主要是LSM-tree和B-tree),它们应对的不同场景,所采用的底层存 ...

  2. 温故知新-多线程-深入刨析synchronized

    Posted by 微博@Yangsc_o 原创文章,版权声明:自由转载-非商用-非衍生-保持署名 | Creative Commons BY-NC-ND 3.0 文章目录 摘要 synchroniz ...

  3. 恕我直言,我怀疑你并不会用 Java 枚举

    开门见山地说吧,enum(枚举)是 Java 1.5 时引入的关键字,它表示一种特殊类型的类,默认继承自 java.lang.Enum. 为了证明这一点,我们来新建一个枚举 PlayerType: p ...

  4. 06.Django-用户认证

    用户认证 Django 内置一个 auth 模块,帮助用户实现注册.登录.注销以及修改密码等功能,帮助开发者省去了很多功夫 用于认证的数据表 auth_user User是auth模块中维护用户信息的 ...

  5. java类的加载顺序和实例化顺序(Demo程序)

    一.main函数中实例化对象 父类 package com.learn; public class Father { //静态变量 public static int num_1 = 1; //静态代 ...

  6. hql 转 sql

    import org.hibernate.engine.SessionFactoryImplementor; import org.hibernate.hql.ast.QueryTranslatorI ...

  7. (九)HttpClient获取cookies

    原文链接:https://blog.csdn.net/cheny1p1ng/article/details/90780024 旧版本DefaultHttpClient 使用getCookieStore ...

  8. Node.js躬行记(4)——自建前端监控系统

    这套前端监控系统用到的技术栈是:React+MongoDB+Node.js+Koa2.将性能和错误量化.因为自己平时喜欢吃菠萝,所以就取名叫菠萝系统.其实在很早以前就有这个想法,当时已经实现了前端的参 ...

  9. Vue结合路由配置递归实现菜单栏

    作者:小土豆biubiubiu 博客园:https://www.cnblogs.com/HouJiao/ 掘金:https://juejin.im/user/58c61b4361ff4b005d9e8 ...

  10. LaTeX中常用代码段snippets(持续更新)

    1.displaymath 单行数学环境,不带编号. \begin{displaymath} This\ is\ displaymath\ envirment.\ I\ don 't\ have\ a ...