第8章 Spark SQL实战

8.1 数据说明

数据集是货品交易数据集。

每个订单可能包含多个货品,每个订单可以产生多次交易,不同的货品有不同的单价。

8.2 加载数据

tbStock:

scala> case class tbStock(ordernumber:String,locationid:String,dateid:String) extends Serializable
defined class tbStock scala> val tbStockRdd = spark.sparkContext.textFile("tbStock.txt")
tbStockRdd: org.apache.spark.rdd.RDD[String] = tbStock.txt MapPartitionsRDD[1] at textFile at <console>:23 scala> val tbStockDS = tbStockRdd.map(_.split(",")).map(attr=>tbStock(attr(0),attr(1),attr(2))).toDS
tbStockDS: org.apache.spark.sql.Dataset[tbStock] = [ordernumber: string, locationid: string ... 1 more field] scala> tbStockDS.show()
+------------+----------+---------+
| ordernumber|locationid| dataid|
+------------+----------+---------+
|BYSL00000893| ZHAO|2007-8-23|
|BYSL00000897| ZHAO|2007-8-24|
|BYSL00000898| ZHAO|2007-8-25|
|BYSL00000899| ZHAO|2007-8-26|
|BYSL00000900| ZHAO|2007-8-26|
|BYSL00000901| ZHAO|2007-8-27|
|BYSL00000902| ZHAO|2007-8-27|
|BYSL00000904| ZHAO|2007-8-28|
|BYSL00000905| ZHAO|2007-8-28|
|BYSL00000906| ZHAO|2007-8-28|
|BYSL00000907| ZHAO|2007-8-29|
|BYSL00000908| ZHAO|2007-8-30|
|BYSL00000909| ZHAO| 2007-9-1|
|BYSL00000910| ZHAO| 2007-9-1|
|BYSL00000911| ZHAO|2007-8-31|
|BYSL00000912| ZHAO| 2007-9-2|
|BYSL00000913| ZHAO| 2007-9-3|
|BYSL00000914| ZHAO| 2007-9-3|
|BYSL00000915| ZHAO| 2007-9-4|
|BYSL00000916| ZHAO| 2007-9-4|
+------------+----------+---------+
only showing top 20 rows

tbStockDetail:

scala> case class tbStockDetail(ordernumber:String, rownum:Int, itemid:String, number:Int, price:Double, amount:Double) extends Serializable
defined class tbStockDetail scala> val tbStockDetailRdd = spark.sparkContext.textFile("tbStockDetail.txt")
tbStockDetailRdd: org.apache.spark.rdd.RDD[String] = tbStockDetail.txt MapPartitionsRDD[13] at textFile at <console>:23 scala> val tbStockDetailDS = tbStockDetailRdd.map(_.split(",")).map(attr=> tbStockDetail(attr(0),attr(1).trim().toInt,attr(2),attr(3).trim().toInt,attr(4).trim().toDouble, attr(5).trim().toDouble)).toDS
tbStockDetailDS: org.apache.spark.sql.Dataset[tbStockDetail] = [ordernumber: string, rownum: int ... 4 more fields] scala> tbStockDetailDS.show()
+------------+------+--------------+------+-----+------+
| ordernumber|rownum| itemid|number|price|amount|
+------------+------+--------------+------+-----+------+
|BYSL00000893| 0|FS527258160501| -1|268.0|-268.0|
|BYSL00000893| 1|FS527258169701| 1|268.0| 268.0|
|BYSL00000893| 2|FS527230163001| 1|198.0| 198.0|
|BYSL00000893| 3|24627209125406| 1|298.0| 298.0|
|BYSL00000893| 4|K9527220210202| 1|120.0| 120.0|
|BYSL00000893| 5|01527291670102| 1|268.0| 268.0|
|BYSL00000893| 6|QY527271800242| 1|158.0| 158.0|
|BYSL00000893| 7|ST040000010000| 8| 0.0| 0.0|
|BYSL00000897| 0|04527200711305| 1|198.0| 198.0|
|BYSL00000897| 1|MY627234650201| 1|120.0| 120.0|
|BYSL00000897| 2|01227111791001| 1|249.0| 249.0|
|BYSL00000897| 3|MY627234610402| 1|120.0| 120.0|
|BYSL00000897| 4|01527282681202| 1|268.0| 268.0|
|BYSL00000897| 5|84126182820102| 1|158.0| 158.0|
|BYSL00000897| 6|K9127105010402| 1|239.0| 239.0|
|BYSL00000897| 7|QY127175210405| 1|199.0| 199.0|
|BYSL00000897| 8|24127151630206| 1|299.0| 299.0|
|BYSL00000897| 9|G1126101350002| 1|158.0| 158.0|
|BYSL00000897| 10|FS527258160501| 1|198.0| 198.0|
|BYSL00000897| 11|ST040000010000| 13| 0.0| 0.0|
+------------+------+--------------+------+-----+------+
only showing top 20 rows

tbDate:

scala> case class tbDate(dateid:String, years:Int, theyear:Int, month:Int, day:Int, weekday:Int, week:Int, quarter:Int, period:Int, halfmonth:Int) extends Serializable
defined class tbDate scala> val tbDateRdd = spark.sparkContext.textFile("tbDate.txt")
tbDateRdd: org.apache.spark.rdd.RDD[String] = tbDate.txt MapPartitionsRDD[20] at textFile at <console>:23 scala> val tbDateDS = tbDateRdd.map(_.split(",")).map(attr=> tbDate(attr(0),attr(1).trim().toInt, attr(2).trim().toInt,attr(3).trim().toInt, attr(4).trim().toInt, attr(5).trim().toInt, attr(6).trim().toInt, attr(7).trim().toInt, attr(8).trim().toInt, attr(9).trim().toInt)).toDS
tbDateDS: org.apache.spark.sql.Dataset[tbDate] = [dateid: string, years: int ... 8 more fields] scala> tbDateDS.show()
+---------+------+-------+-----+---+-------+----+-------+------+---------+
| dateid| years|theyear|month|day|weekday|week|quarter|period|halfmonth|
+---------+------+-------+-----+---+-------+----+-------+------+---------+
| 2003-1-1|200301| 2003| 1| 1| 3| 1| 1| 1| 1|
| 2003-1-2|200301| 2003| 1| 2| 4| 1| 1| 1| 1|
| 2003-1-3|200301| 2003| 1| 3| 5| 1| 1| 1| 1|
| 2003-1-4|200301| 2003| 1| 4| 6| 1| 1| 1| 1|
| 2003-1-5|200301| 2003| 1| 5| 7| 1| 1| 1| 1|
| 2003-1-6|200301| 2003| 1| 6| 1| 2| 1| 1| 1|
| 2003-1-7|200301| 2003| 1| 7| 2| 2| 1| 1| 1|
| 2003-1-8|200301| 2003| 1| 8| 3| 2| 1| 1| 1|
| 2003-1-9|200301| 2003| 1| 9| 4| 2| 1| 1| 1|
|2003-1-10|200301| 2003| 1| 10| 5| 2| 1| 1| 1|
|2003-1-11|200301| 2003| 1| 11| 6| 2| 1| 2| 1|
|2003-1-12|200301| 2003| 1| 12| 7| 2| 1| 2| 1|
|2003-1-13|200301| 2003| 1| 13| 1| 3| 1| 2| 1|
|2003-1-14|200301| 2003| 1| 14| 2| 3| 1| 2| 1|
|2003-1-15|200301| 2003| 1| 15| 3| 3| 1| 2| 1|
|2003-1-16|200301| 2003| 1| 16| 4| 3| 1| 2| 2|
|2003-1-17|200301| 2003| 1| 17| 5| 3| 1| 2| 2|
|2003-1-18|200301| 2003| 1| 18| 6| 3| 1| 2| 2|
|2003-1-19|200301| 2003| 1| 19| 7| 3| 1| 2| 2|
|2003-1-20|200301| 2003| 1| 20| 1| 4| 1| 2| 2|
+---------+------+-------+-----+---+-------+----+-------+------+---------+
only showing top 20 rows

注册表:

scala> tbStockDS.createOrReplaceTempView("tbStock")

scala> tbDateDS.createOrReplaceTempView("tbDate")

scala> tbStockDetailDS.createOrReplaceTempView("tbStockDetail")

8.3 计算所有订单中每年的销售单数、销售总额

统计所有订单中每年的销售单数、销售总额

三个表连接后以count(distinct a.ordernumber)计销售单数,sum(b.amount)计销售总额

SELECT c.theyear, COUNT(DISTINCT a.ordernumber), SUM(b.amount)
FROM tbStock a
JOIN tbStockDetail b ON a.ordernumber = b.ordernumber
JOIN tbDate c ON a.dateid = c.dateid
GROUP BY c.theyear
ORDER BY c.theyear
spark.sql("SELECT c.theyear, COUNT(DISTINCT a.ordernumber), SUM(b.amount) FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear ORDER BY c.theyear").show

结果如下:

+-------+---------------------------+--------------------+
|theyear|count(DISTINCT ordernumber)| sum(amount)|
+-------+---------------------------+--------------------+
| 2004| 1094| 3268115.499199999|
| 2005| 3828|1.3257564149999991E7|
| 2006| 3772|1.3680982900000006E7|
| 2007| 4885|1.6719354559999993E7|
| 2008| 4861| 1.467429530000001E7|
| 2009| 2619| 6323697.189999999|
| 2010| 94| 210949.65999999997|
+-------+---------------------------+--------------------+

8.4 计算所有订单每年最大金额订单的销售额

目标:统计每年最大金额订单的销售额:

1)统计每年,每个订单一共有多少销售额

SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount
FROM tbStock a
JOIN tbStockDetail b ON a.ordernumber = b.ordernumber
GROUP BY a.dateid, a.ordernumber
spark.sql("SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber GROUP BY a.dateid, a.ordernumber").show

结果如下:

+----------+------------+------------------+
| dateid| ordernumber| SumOfAmount|
+----------+------------+------------------+
| 2008-4-9|BYSL00001175| 350.0|
| 2008-5-12|BYSL00001214| 592.0|
| 2008-7-29|BYSL00011545| 2064.0|
| 2008-9-5|DGSL00012056| 1782.0|
| 2008-12-1|DGSL00013189| 318.0|
|2008-12-18|DGSL00013374| 963.0|
| 2009-8-9|DGSL00015223| 4655.0|
| 2009-10-5|DGSL00015585| 3445.0|
| 2010-1-14|DGSL00016374| 2934.0|
| 2006-9-24|GCSL00000673|3556.1000000000004|
| 2007-1-26|GCSL00000826| 9375.199999999999|
| 2007-5-24|GCSL00001020| 6171.300000000002|
| 2008-1-8|GCSL00001217| 7601.6|
| 2008-9-16|GCSL00012204| 2018.0|
| 2006-7-27|GHSL00000603| 2835.6|
|2006-11-15|GHSL00000741| 3951.94|
| 2007-6-6|GHSL00001149| 0.0|
| 2008-4-18|GHSL00001631| 12.0|
| 2008-7-15|GHSL00011367| 578.0|
| 2009-5-8|GHSL00014637| 1797.6|
+----------+------------+------------------+

2)以上一步查询结果为基础表,和表tbDate使用dateid join,求出每年最大金额订单的销售额

SELECT theyear, MAX(c.SumOfAmount) AS SumOfAmount
FROM (SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount
FROM tbStock a
JOIN tbStockDetail b ON a.ordernumber = b.ordernumber
GROUP BY a.dateid, a.ordernumber
) c
JOIN tbDate d ON c.dateid = d.dateid
GROUP BY theyear
ORDER BY theyear DESC
spark.sql("SELECT theyear, MAX(c.SumOfAmount) AS SumOfAmount FROM (SELECT a.dateid, a.ordernumber, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber GROUP BY a.dateid, a.ordernumber ) c JOIN tbDate d ON c.dateid = d.dateid GROUP BY theyear ORDER BY theyear DESC").show

结果如下:

+-------+------------------+
|theyear| SumOfAmount|
+-------+------------------+
| 2010|13065.280000000002|
| 2009|25813.200000000008|
| 2008| 55828.0|
| 2007| 159126.0|
| 2006| 36124.0|
| 2005|38186.399999999994|
| 2004| 23656.79999999997|
+-------+------------------+

8.5 计算所有订单中每年最畅销货品

目标:统计每年最畅销货品(哪个货品销售额amount在当年最高,哪个就是最畅销货品)

第一步、求出每年每个货品的销售额

SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount
FROM tbStock a
JOIN tbStockDetail b ON a.ordernumber = b.ordernumber
JOIN tbDate c ON a.dateid = c.dateid
GROUP BY c.theyear, b.itemid
spark.sql("SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid").show

结果如下:

+-------+--------------+------------------+
|theyear| itemid| SumOfAmount|
+-------+--------------+------------------+
| 2004|43824480810202| 4474.72|
| 2006|YA214325360101| 556.0|
| 2006|BT624202120102| 360.0|
| 2007|AK215371910101|24603.639999999992|
| 2008|AK216169120201|29144.199999999997|
| 2008|YL526228310106|16073.099999999999|
| 2009|KM529221590106| 5124.800000000001|
| 2004|HT224181030201|2898.6000000000004|
| 2004|SG224308320206| 7307.06|
| 2007|04426485470201|14468.800000000001|
| 2007|84326389100102| 9134.11|
| 2007|B4426438020201| 19884.2|
| 2008|YL427437320101|12331.799999999997|
| 2008|MH215303070101| 8827.0|
| 2009|YL629228280106| 12698.4|
| 2009|BL529298020602| 2415.8|
| 2009|F5127363019006| 614.0|
| 2005|24425428180101| 34890.74|
| 2007|YA214127270101| 240.0|
| 2007|MY127134830105| 11099.92|
+-------+--------------+------------------+

第二步、在第一步的基础上,统计每年单个货品中的最大金额

SELECT d.theyear, MAX(d.SumOfAmount) AS MaxOfAmount
FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount
FROM tbStock a
JOIN tbStockDetail b ON a.ordernumber = b.ordernumber
JOIN tbDate c ON a.dateid = c.dateid
GROUP BY c.theyear, b.itemid
) d
GROUP BY d.theyear
spark.sql("SELECT d.theyear, MAX(d.SumOfAmount) AS MaxOfAmount FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid ) d GROUP BY d.theyear").show

结果如下:

+-------+------------------+
|theyear| MaxOfAmount|
+-------+------------------+
| 2007| 70225.1|
| 2006| 113720.6|
| 2004|53401.759999999995|
| 2009| 30029.2|
| 2005|56627.329999999994|
| 2010| 4494.0|
| 2008| 98003.60000000003|
+-------+------------------+

第三步、用最大销售额和统计好的每个货品的销售额join,以及用年join,集合得到最畅销货品那一行信息

SELECT DISTINCT e.theyear, e.itemid, f.MaxOfAmount
FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount
FROM tbStock a
JOIN tbStockDetail b ON a.ordernumber = b.ordernumber
JOIN tbDate c ON a.dateid = c.dateid
GROUP BY c.theyear, b.itemid
) e
JOIN (SELECT d.theyear, MAX(d.SumOfAmount) AS MaxOfAmount
FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS SumOfAmount
FROM tbStock a
JOIN tbStockDetail b ON a.ordernumber = b.ordernumber
JOIN tbDate c ON a.dateid = c.dateid
GROUP BY c.theyear, b.itemid
) d
GROUP BY d.theyear
) f ON e.theyear = f.theyear
AND e.SumOfAmount = f.MaxOfAmount
ORDER BY e.theyear
spark.sql("SELECT DISTINCT e.theyear, e.itemid, f.maxofamount FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS sumofamount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid ) e JOIN (SELECT d.theyear, MAX(d.sumofamount) AS maxofamount FROM (SELECT c.theyear, b.itemid, SUM(b.amount) AS sumofamount FROM tbStock a JOIN tbStockDetail b ON a.ordernumber = b.ordernumber JOIN tbDate c ON a.dateid = c.dateid GROUP BY c.theyear, b.itemid ) d GROUP BY d.theyear ) f ON e.theyear = f.theyear AND e.sumofamount = f.maxofamount ORDER BY e.theyear").show

结果如下:

+-------+--------------+------------------+
|theyear| itemid| maxofamount|
+-------+--------------+------------------+
| 2004|JY424420810101|53401.759999999995|
| 2005|24124118880102|56627.329999999994|
| 2006|JY425468460101| 113720.6|
| 2007|JY425468460101| 70225.1|
| 2008|E2628204040101| 98003.60000000003|
| 2009|YL327439080102| 30029.2|
| 2010|SQ429425090101| 4494.0|
+-------+--------------+------------------+

第8章 Spark SQL实战的更多相关文章

  1. 第7章 Spark SQL 的运行原理(了解)

    第7章 Spark SQL 的运行原理(了解) 7.1 Spark SQL运行架构 Spark SQL对SQL语句的处理和关系型数据库类似,即词法/语法解析.绑定.优化.执行.Spark SQL会先将 ...

  2. 第1章 Spark SQL概述

    第1章 Spark SQL概述 1.1 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作 ...

  3. Spark SQL实战

    一.程序 package sparklearning import org.apache.log4j.Logger import org.apache.spark.SparkConf import o ...

  4. 大数据技术之_19_Spark学习_03_Spark SQL 应用解析 + Spark SQL 概述、解析 、数据源、实战 + 执行 Spark SQL 查询 + JDBC/ODBC 服务器

    第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataS ...

  5. Spark SQL知识点大全与实战

    Spark SQL概述 1.什么是Spark SQL Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块. 与基本的Spark RDD API不同,Sp ...

  6. Spark SQL知识点与实战

    Spark SQL概述 1.什么是Spark SQL Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块. 与基本的Spark RDD API不同,Sp ...

  7. 以慕课网日志分析为例-进入大数据Spark SQL的世界

    下载地址.请联系群主 第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目 ...

  8. 以某课网日志分析为例 进入大数据 Spark SQL 的世界

    第1章 初探大数据 本章将介绍为什么要学习大数据.如何学好大数据.如何快速转型大数据岗位.本项目实战课程的内容安排.本项目实战课程的前置内容介绍.开发环境介绍.同时为大家介绍项目中涉及的Hadoop. ...

  9. Spark SQL 源代码分析系列

    从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 ...

随机推荐

  1. ES Reindex用java来实现

    简单的: 核心代码 //发送请求 ReindexRequestBuilder builder=ReindexAction.INSTANCE.newRequestBuilder(client).sour ...

  2. 面试官:如何在Integer类型的ArrayList中同时添加String、Character、Boolean等类型的数据? | Java反射高级应用

    原文链接:原文来自公众号:C you again,欢迎关注! 1.问题描述     "如何在Integer类型的ArrayList中同时添加String.Character.Boolean等 ...

  3. 《谁说菜鸟不会数据分析》高清PDF全彩版|百度网盘免费下载|Python数据分析

    <谁说菜鸟不会数据分析>高清PDF全彩版|百度网盘免费下载|Python数据分析 提取码:p7uo 内容简介 <谁说菜鸟不会数据分析(全彩)>内容简介:很多人看到数据分析就望而 ...

  4. this指向面试题两则

    面试题1 let len = 10; function fn() { console.info(this.len) } fn(); // A let Person = { len: 5, say: f ...

  5. linux 命令行 拯救萌新精简版

    装上linux 真机而不会命令行简直是太难了(这是什么人间疾苦) 于是,来几个非常基础的命令行,给(像我这样)的萌新们一点点前进的动力,也给奋斗在linux路上的大佬们一点点来自萌新的敬意吧. 一个非 ...

  6. PHP strncmp() 函数

    实例 比较两个字符串(区分大小写): <?php高佣联盟 www.cgewang.comecho strncmp("Hello world!","Hello ear ...

  7. Android中的LruCache的原理和使用

    Android中的LruCache的原理和使用 LruCache,虽然很多文章都把LRU翻译成"最近最少使用"缓存策略,但Android中的LruCache真的如此吗? 答案是No ...

  8. 关于python中的 take no arguments 的解决方法

    针对第四章编写的代码出现的错误做一个总结 Traceback (most recent call last): File "H:\image\chapter4\p81_chongxie.py ...

  9. Android menu菜单的深入了解。。。

    今天补充刚开始的菜单控件,这是基于: https://www.cnblogs.com/aolong/p/12868015.html 里面的菜单写的. 今天学的后面部分是结合昨天的Fragment一起的 ...

  10. “随手记”APP与已经发布的记账软件“鲨鱼记账”的差距

    我们使用并观察了“鲨鱼记账”APP,发现,我们的软件真的还有很多不足的地方.就功能这方面来说:“鲨鱼记账”APP有更多的收入.支出分类:就界面来说:“鲨鱼记账”APP有比我们优美太多的页面和背景.但是 ...