【模板】【P3402】可持久化并查集
(题面来自洛谷)
题目描述
n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0
\(n \le 10^5, m \le 2\times 10^5\)
考虑不带路径压缩、使用启发式合并的并查集,每一次合并实际上只是改变了两个点的信息。
1. v的父亲置为u
2. \(size(u) += size(v)\)
那么将数组fa、size改为可持久化数组维护即可。
复杂度分析:根据启发式合并性质,每次Find操作会执行\(logn\)次循环,循环中为可持久化数组查询,故Find操作的单次复杂度为\(O(log^2n)\)。
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
const int maxn(200010);
int n, m;
struct Seg_tree {
#define mid ((l + r) >> 1)
#define lc(nd) seg[nd].lc
#define rc(nd) seg[nd].rc
struct node {
int dat, lc, rc;
/* node(int a = 0, int b = 0, int c = 0):
dat(a), lc(b), rc(c) {}*/
// node(): dat(0), lc(0), rc(0) {}
} seg[maxn * 40];
int root[maxn], tot;
void modify(int& nd, int pre, int l, int r, int pos, int x) {
nd = ++tot;
seg[nd] = seg[pre];
if (l == r) {
seg[nd] = (node) {x, 0, 0};
return;
}
if (pos <= mid) modify(lc(nd), lc(pre), l, mid, pos, x);
else modify(rc(nd), rc(pre), mid+1, r, pos, x);
}
void build(int &nd, int l, int r, int val) {
nd = ++tot;
if (l == r) {
seg[nd] = (node) {val, 0, 0};
return;
}
build(lc(nd), l, mid, val);
build(rc(nd), mid+1, r, val);
return;
}
int query(int nd, int l, int r, int pos) {
if (!nd) return 0;
if (l == r) return seg[nd].dat;
if (pos <= mid) return query(lc(nd), l, mid, pos);
return query(rc(nd), mid+1, r, pos);
}
} Dsu, Siz;
int Find(int x, int ver) {
int tmp;
while (tmp = Dsu.query(Dsu.root[ver], 1, n, x)) x = tmp;
return x;
}
inline void merge(int u, int v, int ver) {
u = Find(u, ver), v = Find(v, ver);
if (u == v) return;
int a, b;
if ((a = Siz.query(Siz.root[ver], 1, n, u)) < (b = Siz.query(Siz.root[ver], 1, n, v))) swap(u, v);
Dsu.modify(Dsu.root[ver], Dsu.root[ver-1], 1, n, v, u);
Siz.modify(Siz.root[ver], Siz.root[ver-1], 1, n, u, a + b);
return;
}
int main() {
// freopen("test.in", "r", stdin);
// freopen("test.ans", "w", stdout);
scanf("%d %d", &n, &m);
Siz.build(Siz.root[0], 1, n, 1);
int op, u, v;
for (int i = 1; i <= m; ++i) {
scanf("%d %d", &op, &u);
if (op == 1) {
Siz.root[i] = Siz.root[i-1];
Dsu.root[i] = Dsu.root[i-1];
scanf("%d", &v);
merge(u, v, i);
} else if (op == 2) {
Siz.root[i] = Siz.root[u];
Dsu.root[i] = Dsu.root[u];
} else {
Siz.root[i] = Siz.root[i-1];
Dsu.root[i] = Dsu.root[i-1];
scanf("%d", &v);
putchar(Find(u, i) == Find(v, i) ? '1' : '0');
putchar('\n');
}
}
return 0;
}
【模板】【P3402】可持久化并查集的更多相关文章
- bzoj3673 & bzoj3674 & 洛谷P3402 可持久化并查集
题目:bzoj3673:https://www.lydsy.com/JudgeOnline/problem.php?id=3673 bzoj3674:https://www.lydsy.com/Jud ...
- 「luogu3402」【模板】可持久化并查集
「luogu3402」[模板]可持久化并查集 传送门 我们可以用一个可持久化数组来存每个节点的父亲. 单点信息更新和查询就用主席树多花 一个 \(\log\) 的代价来搞. 然后考虑如何合并两个点. ...
- 洛谷P3402 【模板】可持久化并查集 [主席树,并查集]
题目传送门 可持久化并查集 n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 ...
- 【洛谷 P3402】 【模板】可持久化并查集
题目链接 可持久化并查集,就是用可持久化线段树维护每个版本每个节点的父亲,这样显然是不能路径压缩的,否则我们需要恢复太多状态. 但是这并不影响我们启发式合并,于是,每次把深度小的连通块向深度大的上并就 ...
- 洛谷P3402 可持久化并查集
n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 说是可持久化并查集,实际上是 ...
- 洛谷P3402 【模板】可持久化并查集(可持久化线段树,线段树)
orz TPLY 巨佬,题解讲的挺好的. 这里重点梳理一下思路,做一个小小的补充吧. 写可持久化线段树,叶子节点维护每个位置的fa,利用每次只更新一个节点的特性,每次插入\(logN\)个节点,这一部 ...
- P3402 可持久化并查集
P3402 通过主席树维护不同版本的并查集,注意要采用按秩合并的方式,路径压缩可能会爆. 1 #include <bits/stdc++.h> 2 using namespace std; ...
- P3402 【模板】可持久化并查集
传送门 //minamoto #include<bits/stdc++.h> using namespace std; #define getc() (p1==p2&&(p ...
- 洛谷P3402 【模板】可持久化并查集
一定注意每一次都要是 $root[cur]=root[cur-1]$,不然进行合并时如果 $a,b$ 在同一集合中就会使 $root[cur]=0$. Code: #include <cstdi ...
- Luogu3402【模板】可持久化并查集 (主席树)
用\(depth\)按秩合并,不能直接启发,数组开40倍左右 #include <iostream> #include <cstdio> #include <cstrin ...
随机推荐
- Java安全之安全加密算法
Java安全之安全加密算法 0x00 前言 本篇文来谈谈关于常见的一些加密算法,其实在此之前,对算法的了解并不是太多.了解的层次只是基于加密算法的一些应用上.也来浅谈一下加密算法在安全领域中的作用.写 ...
- java关键字之abstract
Java 允许类,借口或成员方法具有抽象属性. abstract 修饰的类叫做抽象类,该类不能被实例化. abstract 修饰的方法叫抽象方法,抽象方法只有声明部分,没有具体的方法体. 接口总是 ...
- STM32入门系列-GPIO概念介绍
GPIO(general purpose intput output)是通用输入输出端口的简称,可以通过软件来控制其输入和输出.STM32 芯片的 GPIO 引脚与外部设备连接起来,从而实现与外部通讯 ...
- 1.DRF初始化
1.DRF框架的8个核心功能 1.认证(用户登录校验用户名密码或者token是否合法) 2.权限(根据不同的用户角色,可以操作不同的表) 3.限流(限制接口访问速度) 4.序列化(返回json) ...
- CF1008D Pave the Parallelepiped
容斥原理 解法一: 其他容斥原理的题也可以用这种思想 先把$A$,$B$,$C$分解因数 一种很暴力的想法是,将这些因数分成若干个集合(画出韦恩图),然后对有序数组的三个数分别枚举其位于哪一个集合中 ...
- netstat与ss
netstat -t:tcp协议的连接 -u:udp协议的链接 -l:监听状态的连接 -a:所有状态的连接 -p:连接相关的进程 -n:数字格式显示 -r:显示路由表,类似于route或ip rout ...
- 2.5远程仓的库使用-2.7Git别名
2.5 远程仓库的使用 查看远程仓库 git remote # -v 选项会显示需要读写远程仓库使用的 Git 保存的简写与其对应的 URL 添加远程仓库 git remote add <sho ...
- python爬虫06取当当网 Top 500 本五星好评书籍
主要思路 使用 page 变量来实现翻页 我们使用 requests 请求当当网 然后将返回的 HTML 进行正则解析 由于我们暂时还没学到数据库 所以解析完之后就把内容存到文件中 def main( ...
- SWT JFace 小制作 文本阅读器
1 package swt_jface.demo11; 2 import java.io.File; 3 import java.io.FileInputStream; 4 import java.i ...
- iOS开发 objective C 代码布局
代码布局抛弃storyboard,用代码生成界面,它的优劣不谈 首先在项目设置中,更改应用的"入口" 不选main,清空它 然后在AppDelegate.m中,更改(添加内容),别 ...