5.29 省选模拟赛 波波老师 SAM 线段树 单调队列 并查集
LINK:波波老师
LINK:同bzoj 1396 识别子串
不过前者要求线性做法 后者可以log过。实际上前者也被我一个log给水过了.
其实不算很水 我自认跑的很快罢了.
都是求经过一个位置的最短的 在整个字符串中只出现过一次的子串。
SAM很容易完成这个东西.
考虑对于计算每个节点的贡献 容易发现是一个区间整体赋值和一个等差数列 不过太懒了不想维护这个等差数列 我反着建SAM维护最右左端点了。
就变成了两个区间最值问题。完全可以标记永久化 可能有点卡空间。
当然考场上也思考了O(n)的做法 先考虑等差数列那个地方 由于right集大小为1 那么显然这个点的len是一直到之后都有效所以可以直接标记最后取max
考虑区间取min操作。当时想法是排序后利用并查集 排列可以利用桶排 然后复杂度就降到\(n\cdor (a)\)
可以发现桶排序之后可以利用单调队列+链表 来实现O(n).细节有点繁琐 不再赘述.
标记永久化还是很快滴 (比其他dalao写zkw线段树要快一点.当时我也想写zkw线段树 不过不太熟练所以就没用
const int MAXN=5000010;
int n,cnt=1,last=1;
int sum[MAXN<<2],w[MAXN<<2];//一个取max 一个取min.
struct wy
{
int ch[5];
int fa,len;
}t[MAXN<<1];
char a[MAXN];ll ans;
int c[MAXN],vis[MAXN<<1],s[MAXN<<1];
inline void insert(int x)
{
int p=last;
int np=last=++cnt;
len(np)=len(p)+1;
while(p&&!t[p].ch[x])
{
t[p].ch[x]=np;
p=f(p);
}
if(!p)f(np)=1;
else
{
int q=t[p].ch[x];
if(len(q)==len(p)+1)f(np)=q;
else
{
int nq=++cnt;
t[nq]=t[q];
len(nq)=len(p)+1;
f(np)=f(q)=nq;
while(p&&t[p].ch[x]==q)
{
t[p].ch[x]=nq;
p=f(p);
}
}
}
}
inline void topsort()
{
rep(1,cnt,i)++c[len(i)];
rep(1,n,i)c[i]+=c[i-1];
rep(1,cnt,i)s[c[len(i)]--]=i;
}
inline void change(int p,int l,int r,int L,int R,int x)
{
if(l==L&&r==R)return sum[p]=min(sum[p],x),void();
int mid=(l+r)>>1;
if(L>mid)return change(yy,mid+1,r,L,R,x),void();
if(R<=mid)return change(zz,l,mid,L,R,x),void();
change(zz,l,mid,L,mid,x);change(yy,mid+1,r,mid+1,R,x);
}
inline void modify(int p,int l,int r,int L,int R,int x)
{
if(l==L&&r==R)return w[p]=max(w[p],x),void();
int mid=(l+r)>>1;
if(L>mid)return modify(yy,mid+1,r,L,R,x),void();
if(R<=mid)return modify(zz,l,mid,L,R,x),void();
modify(zz,l,mid,L,mid,x);modify(yy,mid+1,r,mid+1,R,x);
}
inline void dfs(int p,int l,int r,int S,int W)
{
S=min(S,sum[p]);W=max(W,w[p]);
if(l==r)
{
if(W==0)W=-INF;
ans+=min(S,l-W+1);
return;
}
int mid=(l+r)>>1;
dfs(zz,l,mid,S,W);
dfs(yy,mid+1,r,S,W);
}
int main()
{
freopen("bobo.in","r",stdin);
freopen("bobo.out","w",stdout);
gc(a);n=strlen(a+1);
fep(n,1,i)insert(a[i]-'a'),vis[last]=i;
topsort();
memset(sum,0x3f,sizeof(sum));
fep(cnt,2,i)
{
int x=s[i];
//cout<<vis[x]<<' '<<len(x)<<endl;
if(vis[x]==-1)vis[f(x)]=-1;
else
{
if(!vis[f(x)])vis[f(x)]=vis[x];
else vis[f(x)]=-1;
}
if(vis[x]!=-1)
{
change(1,1,n,vis[x],vis[x]+len(f(x)),len(f(x))+1);
modify(1,1,n,vis[x]+len(f(x)),vis[x]+len(x)-1,vis[x]);
}
}
dfs(1,1,n,INF,0);putl(ans);
return 0;
}
5.29 省选模拟赛 波波老师 SAM 线段树 单调队列 并查集的更多相关文章
- @省选模拟赛03/16 - T3@ 超级树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...
- 6.29 省选模拟赛 坏题 AC自动机 dp 图论
考场上随手构造了一组数据把自己卡掉了 然后一直都是掉线状态了. 最后发现这个东西不是subtask -1的情况不多 所以就没管无解直接莽 写题有点晚 故没调出来.. 考虑怎么做 容易想到建立AC自动机 ...
- 5.29 省选模拟赛 树的染色 dp 最优性优化
LINK:树的染色 考场上以为这道题要爆蛋了 没想到 推出正解来了. 反正是先写了爆搜的 爆搜最近越写越熟练了 容易想到dp 容易设出状态 f[i][j]表示以i为根的子树内白色的值为j此时黑色的值怎 ...
- 3.29省选模拟赛 除法与取模 dp+组合计数
LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...
- 4.9 省选模拟赛 划分序列 二分 结论 树状数组优化dp
显然发现可以二分. 对于n<=100暴力dp f[i][j]表示前i个数分成j段对于当前的答案是否可行. 可以发现这个dp是可以被优化的 sum[i]-sum[j]<=mid sum[i] ...
- 6.18 省选模拟赛 字符串 LCT SAM
LINK:字符串 看起来很难做 考虑一种暴力 建立SAM后每次查询暴力扫儿子. 期望得分10分.实际得分10分. 另外一种发现每次扫儿子过于暴力 可以每次儿子向上做贡献 每次都暴力向上跳. 期望得分1 ...
- 4.24 省选模拟赛 欧珀瑞特 主席树 可持久化trie树
很容易的一道题目.大概.不过我空间计算失误MLE了 我草草的计算了一下没想到GG了. 关键的是 我学了一个dalao的空间回收的方法 但是弄巧成拙了. 题目没有明确指出 在任意时刻数组长度为有限制什么 ...
- 2018-8-10 模拟赛T3(可持久化线段树)
出题人说:正解离线按DFS序排序线段维护区间和 但是对于树上每个点都有一个区间和一个值,两个点之间求1~m的区间和,这不就是用可持久化线段树吗. 只不过这个线段树需要区间修改,不过不需要标记下传,询问 ...
- 7.18 NOI模拟赛 因懒无名 线段树分治 线段树维护直径
LINK:因懒无名 20分显然有\(n\cdot q\)的暴力. 还有20分 每次只询问一种颜色的直径不过带修改. 容易想到利用线段树维护直径就可以解决了. 当然也可以进行线段树分治 每种颜色存一下直 ...
随机推荐
- java 中Object类中toString()的使用
1. 当我们输出一个对象的引用时,实际上就是调用当前对象的toString() 2. Object类中toString()的定义: public String toString() { return ...
- testNG jar包启动找不到org.testng.TestNG
主要是因为打包时依赖的jar包没有打入,网上有很多需要将对应的jar单独拷贝出来然后通过classpath引用启动,但是感觉这个就是个无底洞.拷贝了这么多个包最后还是说找不到ObjectId 启动命令 ...
- 论TEMP临时变量与VAR静态变量
TEMP临时变量:顾名思义,这种变量类型是临时的,没有固定的存放数据的内存空间.每次扫描结束后则清零,在下个扫描周期开始时,这个变量的值都是不确定的,一般为0.使用临时变量需要遵循一个原则:先赋值再使 ...
- Linux08 /Docker
Linux08 /Docker 目录 Linux08 /Docker 1. docker简介/安装 2. Docker镜像加速器的设置 3. 核心三要素 镜像仓库/Registry 镜像/Image: ...
- Ethical Hacking - Web Penetration Testing(9)
SQL INJECTION Discovering SQLi in GET Inject by browser URL. Selecting Data From Database Change the ...
- 从一次故障聊聊前端 UI 自动化测试
背景 事件的起因在于老板最近的两次"故障",一次去年的,一次最近.共同原因都是脚手架在发布平台发布打包时出错,导致线上应用白屏不可用. 最神奇的是,事后多次 Code Review ...
- java大数据最全课程学习笔记(5)--MapReduce精通(一)
目前CSDN,博客园,简书同步发表中,更多精彩欢迎访问我的gitee pages 目录 MapReduce精通(一) MapReduce入门 MapReduce定义 MapReduce优缺点 优点 缺 ...
- 猴子吃桃问题之《C语言经典案例分析》
猴子吃桃问题之<C语言经典案例分析>一.[什么是猴子吃桃] 猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个.第二天早上又将第一天剩下的桃子吃掉一半 ...
- pyinstall打包资源文件
相关代码 main.py import sys import os #生成资源文件目录访问路径 #说明: pyinstaller工具打包的可执行文件,运行时sys.frozen会被设置成True # ...
- 10种常见OOM分析——手把手教你写bug
点赞+收藏 就学会系列,文章收录在 GitHub JavaKeeper ,N线互联网开发必备技能兵器谱,笔记自取 在<Java虚拟机规范>的规定里,除了程序计数器外,虚拟机内存的其他几个运 ...