德布鲁因序列与indexing 1
写在前面
在数值计算中,为了控制精度以及避免越界,需要严格控制数值的范围,有时需要知道二进制表示中"left-most 1"或"right-most 1”的位置,这篇文章就来介绍一下通过德布鲁因序列(De Bruijn sequence)来快速定位的方法。
标记left-most 1与right-most 1
对于一个二进制数\(v\),如何仅保留最低位或最高位的1?
最低位的1,即right-most 1,其特点是这一位右侧均为0,可通过v & -v或者v & ((~v)+1)来标记最低位的1。
比如0101 1010,取反后为1010 0101,再加1为1010 0110,与后为0000 0010。
最高位的1,即left-most 1,其特点是这一位左侧均为0,可通过下面来标记最高位的1。
uint32_t keepHighestBit( uint32_t n )
{
n |= (n >> 1);
n |= (n >> 2);
n |= (n >> 4);
n |= (n >> 8);
n |= (n >> 16);
return n - (n >> 1);
}
前5行移位将最高位1右侧的所有位均置为1,n-(n >> 1)再将他们清0。
至此,我们已经得到了一个二进制的“one hot”表示,只有1位为1,它标记了最高位或最低位1的位置。
确定位置
假设,得到的“one hot”表示为0000 0100 0000 0000,如何确定1在哪一位呢?
比较直接的想法是通过移位计数,不断右移,并计数,直到最低位为1。
有没有更好的方法?
令得到的“one hot”表示为h,对于uint32,h只有32种,我们希望找到的这32种one hot表示与\(0\sim 31\)的映射关系,即\(f(h) \rightarrow 0\sim 31\)。
- 查表:以
h对应的uint32数为下标,构建数组,通过查表方式得到,但h最大为\(2^{31}\),直接构建数组不现实 - 哈希:再增加一层映射,\(f(g(h)) \rightarrow 0\sim 31\),即找到一个hash函数\(g\),先将\(h\)映射到\(0 \sim 31\),再通过查表\(0\sim 31 \rightarrow 0\sim 31\),但一般哈希会涉及到取余操作,还要考虑不要有碰撞
对这个特殊问题,可以使用 德布鲁因序列——可视为一种特殊的哈希,不需要取余,且绝不会发生碰撞。
德布鲁因序列(De Bruijn sequence)
先看一个德布鲁因序列的例子,令字符集\(A = \{0, 1\}\),字符有\(k=2\)种,子串长度\(n=2\),则所有可能的子串有\(\{00, 01, 10, 11\}\),则循环序列\(0011\)是一个德布鲁因序列,\(0011\)的所有连续子串恰好为\(\{00, 01, 10, 11\}\),都出现且只出现一次,同样,循环序列\(1001\)也是一个德布鲁因序列。

可见,德布鲁因序列并不唯一,且是个循环序列,长度恰好为\(k^n\),与所有可能子串的数量相同。
wiki上的定义如下,
In combinatorial mathematics, a de Bruijn sequence of order \(n\) on a size-\(k\) alphabet A is a cyclic sequence in which every possible length-\(n\) string on \(A\) occurs exactly once as a substring (i.e., as a contiguous subsequence). Such a sequence is denoted by \(B(k, n)\) and has length \(k^n\), which is also the number of distinct strings of length \(n\) on \(A\).
——from wiki De Bruijn sequence
再举一个\(B(2, 4)\)的例子,序列长度为\(2^4=16\),如下
\]
其所有循环子串如下,
.png)
每个位置的子串均不相同,所有子串对应着\(0\sim 2^n-1\)范围的整数,恰好形成了\(2^n\)个位置与\(2^n\)个数的映射。
德布鲁因序列的使用
将h与德布鲁因序列相乘,相当于左移操作,把某位置的子串移到了最左端,再将该子串右移至最右,即仅保留该子串,可知道该子串是什么,因为序列中每个子串的位置都是唯一的,根据映射关系可知道该子串的位置,相当于知道了h。为此需要建立 子串与位置 对应关系的检索表。
unsigned int v;
int r;
static const int MultiplyDeBruijnBitPosition[32] =
{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
r = MultiplyDeBruijnBitPosition[((uint32_t)((v & -v) * 0x077CB531U)) >> 27];
// The index of the LSB in v is stored in r
//return the index of the most significant bit set from a 32 bit unsigned integer
uint8_t highestBitIndex( uint32_t b )
{
static const uint32_t deBruijnMagic = 0x06EB14F9;
static const uint8_t deBruijnTable[32] = {
0, 1, 16, 2, 29, 17, 3, 22, 30, 20, 18, 11, 13, 4, 7, 23,
31, 15, 28, 21, 19, 10, 12, 6, 14, 27, 9, 5, 26, 8, 25, 24,
};
return deBruijnTable[(keepHighestBit(b) * deBruijnMagic) >> 27];
}
因为德布鲁因序列是循环序列,而左移操作会自动在最低位填0,所以习惯将全0子串放在序列的最高位,这样比较方便,不需要特殊处理。
德布鲁因序列的生成与索引表的构建
德布鲁因序列可以通过构建德布鲁因图得到,图中每条哈密顿路径(Hamiltonian path)都对应一个德布鲁因序列,

数量共有
\]
具体生成方式和证明可查看De Bruijn sequence和神奇的德布鲁因序列。
保存子串与位置映射关系的检索表可通过如下方式生成,其中debruijn32为德布鲁因序列对应的uint32正整数。
uint8 index32[32] = {0};
void setup( void )
{
int i;
for(i=0; i<32; i++)
index32[ (debruijn32 << i) >> 27 ] = i;
}
参考
德布鲁因序列与indexing 1的更多相关文章
- Ural2004: Scientists from Spilkovo(德布鲁因序列&思维)
Misha and Dima are promising young scientists. They make incredible discoveries every day together w ...
- 神秘常量0x077CB531,德布莱英序列的恩赐
本文发布于游戏程序员刘宇的个人博客, 转载请注明来源https://www.cnblogs.com/xiaohutu/p/10950011.html 某天我在优化游戏的算法,在将一个个关键数据结构优化 ...
- De Bruijn序列
最近文章中经常出现及De Bruijin 这个关键字,网上搜索了一下,记录下来. De Bruijn序列 (德布鲁因序列) 问题:能否构造一个长度为2的n次方的二进制环状串,使得二进制环状串中总共2的 ...
- 高效的多维空间点索引算法 — Geohash 和 Google S2
原文地址:https://www.jianshu.com/p/7332dcb978b2 引子 每天我们晚上加班回家,可能都会用到滴滴或者共享单车.打开 app 会看到如下的界面: app ...
- 3D-camera结构光原理
3D-camera结构光原理 目前主流的深度探测技术是结构光,TOF,和双目.具体的百度就有很详细的信息. 而结构光也有双目结构光和散斑结构光等,没错,Iphone X 的3D深度相机就用 散斑结构光 ...
- <..................> 哈佛大学哲学系 && 历史哲学笔记文献集
哈佛大学哲学系课程表 (一)概况 (1)哈佛大学哲学系现有教师21人,其中访问教授7人,教师流动性较大,每年有一定的变化.以下为现任教师:Richard Moran(系主任 ...
- Thenao tutorial – indexing
Theano和numpy一样,支持基本的下标取值方法和高级的下标取值方法. 因为theano中没有boolean类型,所以不支持boolean类型的masks. # head file support ...
- 【循序渐进学Python】2. Python中的序列——列表和元组
序列概览 在Python中有六种内建的序列:列表.元组.字符串.Unicode字符串.buffer对象和xrange对象.在这里暂时只讨论列表和元组.列表和元组的主要区别在于:列表可以修改,元组(不可 ...
- Python列表,元组,字典,序列,引用
1.列表 # Filename: using_list.py # This is my shopping list shoplist=["apple", "mango&q ...
随机推荐
- python_lesson2 多进程探索 (multiprocessing包)
进程池 进程池 (Process Pool)可以创建多个进程.这些进程就像是随时待命的士兵,准备执行任务(程序).一个进程池中可以容纳多个待命的士兵. import multiproces ...
- 有趣的条漫版 HashMap,25岁大爷都能看懂
我是风筝,公众号「古时的风筝」,一个兼具深度与广度的程序员鼓励师,一个本打算写诗却写起了代码的田园码农! 文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在 ...
- 利用c++中的设计灵感,既要学BIM分类信息表,借助GIS完成环境搭建改善
我,一个平平无奇的城市规划专业(建筑专业.路桥专业)大学生,还有一年要毕业,很担心工作以后受到社会的毒打,遂问导师和学长,我要自学点什么技能和软件? 学长A:CAD,SketchUp,PS我都很熟练了 ...
- 阿里巴巴--mysql中Mysql模糊查询like效率,以及更高效的写法
在使用msyql进行模糊查询的时候,很自然的会用到like语句,通常情况下,在数据量小的时候,不容易看出查询的效率,但在数据量达到百万级,千万级的时候,查询的效率就很容易显现出来.这个时候查询的效率就 ...
- 暑假集训Day0
啊这 跟学长学的要写日记 希望到时候能写省选集训的总结 咳咳 今天上午做了一上午苦力好像让老苏夸了难以接受(年纪两百考到年级两千他居然没有干我) 上午搞卫生搞到了十点半………… 替女生拉包提东西了!! ...
- JDK8--04:内置接口
在JDK8--3中已经说过,使用lambda方法需要新增函数式接口,为了使用方便,JDK8已经提供了许多内置接口,总的归纳来说,有四大函数式接口. /** * * java8 四大内置接口 * * 1 ...
- vue全家桶(2.6)
3.9.滚动行为 设置滚动行为的作用是导航到新路由时,让页面滚动到你想要的位置. const router = new VueRouter({ routes: [...], scrollBehavio ...
- 洛谷 P1186 【玛丽卡】
这道题题目真的想吐槽一下...是在机房同学的解释下才看懂的.就是让你求在可以删一条边的情况下,并且删后保证可以到达终点时,求删了后的最大的最短路径. 70分暴力思路: 枚举删边,然后跑一下最短路即可, ...
- Spring笔记(3) - debug源码AOP原理解析
案例 @EnableAspectJAutoProxy//开启基于注解的aop模式 @Configuration public class AOPConfig { //业务逻辑类加入容器中 @Bean ...
- CSS3 target 选择器_:target伪类的使用
target作为目标伪类选择器,是css3中的新特性之一,目前已经支持所有主流浏览器,除了 IE8 及更早的版本.target伪类的主要是用于匹配文档中uri中某个标志符的目标元素,具体来说,uri中 ...