GhostNet: More Features from Cheap Operations
论文:GhostNet: More Features from Cheap Operations,CVPR 2020
代码:https://github.com/iamhankai/ghostnet.pytorch/
GhostNet是华为诺亚方舟实验室在CVPR2020提出,可以在同样精度下,速度和计算量均少于SOTA方法。当前神经网络偏向于移动设备应用,一些重于模型的压缩,比如剪枝、量化、知识蒸馏等。另一些着重于高效的网络设计,比如 MobileNet, ShuffleNet 等。
训练好的网络里的feature map存在大量的冗余信息,相追似的 feature map 类似于 ghost,如下图所示:

作者认为:并非所有 feature map 都需要用卷积操作来得到,“ghost” feature map可以用更加廉价的操作来生成,因此,作者就提出了 Ghost module。

Ghost module 如上图所示,可以看到,包括两次卷积。假设output的通道数为 \(init\_channels * ratio\),那么第一次卷积生成 \(init\_channels\) 个 feature map。
第二次卷积:每个 feature map 通过映射生成 \(ratio-1\) 个新的 feature map,这样会生成 \(init_channels*(ratio-1)\) 个 feature map。最后,把第一次卷积和第二次卷积得到的 feature map 拼接在一起,得到output,通道数为\(init\_channels * ratio\)。
Ghost module 的代码如下所示,关键步骤我添加了备注说明:
class GhostModule(nn.Module):
def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):
super(GhostModule, self).__init__()
self.oup = oup
init_channels = math.ceil(oup / ratio)
new_channels = init_channels*(ratio-1)
# 第一次卷积:得到通道数为init_channels,是输出的 1/ratio
self.primary_conv = nn.Sequential(
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False),
nn.BatchNorm2d(init_channels),
nn.ReLU(inplace=True) if relu else nn.Sequential())
# 第二次卷积:注意有个参数groups,为分组卷积
# 每个feature map被卷积成 raito-1 个新的 feature map
self.cheap_operation = nn.Sequential(
nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False),
nn.BatchNorm2d(new_channels),
nn.ReLU(inplace=True) if relu else nn.Sequential(),
)
def forward(self, x):
x1 = self.primary_conv(x)
x2 = self.cheap_operation(x1)
# 第一次卷积得到的 feature map,被作为 identity
# 和第二次卷积的结果拼接在一起
out = torch.cat([x1,x2], dim=1)
return out[:,:self.oup,:,:]
最有趣的是模块里,第二次卷积,作者也考虑了仿射变换、小波变换等,因为卷积运算有较好的硬件支持,作者更推荐卷积。
Ghost Bottleneck(G-bneck)与residual block类似,主要由两个Ghost模块堆叠二次,第一个模块用于增加特征维度,增大的比例称为expansion ratio,而第二个模块则用于减少特征维度,使其与输入一致。G-bneck包含stride=1和stride=2版本,对于stride=2,shortcut路径使用下采样层,并在Ghost模块中间插入stride=2的depthwise卷积。为了加速,Ghost模块的原始卷积均采用pointwise卷积

在网络架构上,GhostNet 将 MobileNetV3 的 bottleneck block 替换为 Ghost bottleneck,部分 Ghost模块 加入了SE模块。
论文思路比较容易懂,今天就总结到这里。
GhostNet: More Features from Cheap Operations的更多相关文章
- GhostNet:more features from cheap operation
- GhostNet: 使用简单的线性变换生成特征图,超越MobileNetV3的轻量级网络 | CVPR 2020
为了减少神经网络的计算消耗,论文提出Ghost模块来构建高效的网络结果.该模块将原始的卷积层分成两部分,先使用更少的卷积核来生成少量内在特征图,然后通过简单的线性变化操作来进一步高效地生成ghost特 ...
- 轻量化模型系列--GhostNet:廉价操作生成更多特征
前言 由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难.特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究. 论文提出了一种新颖的 Gh ...
- CVPR 2020 全部论文 分类汇总和打包下载
CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域 ...
- CVPR 2020论文收藏(转知乎:https://zhuanlan.zhihu.com/p/112337176)
CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域 ...
- Best practices for a new Go developer
https://blog.rubylearning.com/best-practices-for-a-new-go-developer-8660384302fc This year I had the ...
- 数字图像处理- 3.4 空间滤波 and 3.5 平滑空间滤波器
3.4 空间滤波基础 • Images are often corrupted by random variations in intensity, illumination, or have poo ...
- Freescale OSBDM JM60仿真器
OSBDM-JM60 - 9S08JM60 Based OSBDM — It includes interfaces and firmware applied to all the targets s ...
- Modules you should know in Python Libray
前两天被问到常用的python lib和module有哪些?最常用的那几个,其他的一下子竟然回答不上.想想也是,一般情况下,遇到一个问题,在网上一搜,顺着线索找到可用的例子,然后基本没有怎么深究.结果 ...
随机推荐
- JavaScript基础对象创建模式之声明依赖模式(023)
运用了命名空间(Namespace)模式后, 就可以使用一些JavaScript库了,比如YAHOO作用YUI2库的全局对象,可以通过 YAHOO.util.Dom 和 YAHOO.util.Even ...
- Dynamics CRM 365 不用按钮工具,直接用js脚本控制按钮的显示隐藏
Dynamics CRM 365 不用按钮工具,直接用js脚本控制按钮的显示隐藏: try { // 转备案按钮 let transferSpecialRequestButton = parent.p ...
- SpringCloud之OpenFeign
SpringCloud之openFeign Spring Cloud的子项目之一,Spring Cloud OpenFeign以将OpenFeign集成到Spring Boot应用中的方式,为微服务架 ...
- (私人收藏)蓝色抽象科技感工作计划PPT模板
蓝色抽象科技感工作计划PPT模板 https://pan.baidu.com/s/16iFYH94dVXp_izksVMGMBg0ozp
- css如何设置不可点击?
通过设置元素的pointer-events属性设置为none,来实现元素不可点击.此方法是通过设置元素的鼠标事件失效来实现元素不可点击. css设置不可点击: css代码: .disable { po ...
- CentOS 7 的防火墙开启2
在虚拟机 CentOS 7 上装了 Nginx,结果发现另一台电脑无法访问其默认页面,通过 telnet 192.168.1.88 80 监听发现是 http 80 端口被 CentOS 7 的防火墙 ...
- python入门005
垃圾回收机制详解(了解) 1.引用计数 x = 10 # 直接引用 print(id(x)) y = x z = x l = ['a', 'b', x] # 间接引用 print(id(l[2])) ...
- MyBatis-Plus 用起来真的很舒服
一.MyBatis-Plus 1.简介 MyBatis-Plus 是一个 Mybatis 增强版工具,在 MyBatis 上扩充了其他功能没有改变其基本功能,为了简化开发提交效率而存在. 官网文档地址 ...
- Django13 /缓存、信号、django的读写分离
Django13 /缓存.信号.django的读写分离 目录 Django13 /缓存.信号.django的读写分离 1. 缓存 2. 信号 3. django的读写分离 1. 缓存 缓存简述: 缓存 ...
- SQLAlchemy(二):SQLAlchemy对数据的增删改查操作、属性常用数据类型详解
SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 目录 SQLAlchemy02 /SQLAlchemy对数据的增删改查操作.属性常用数据类型详解 1.用se ...