CF677D Vanya and Treasure

有一个 \(n\times m\) 的矩阵 \(a(1\le a_{i,j}\le p)\),求从起点 \((1,1)\) 出发依次遍历值为 \(1\to p\) 的矩阵单元的最短路径曼哈顿距离。保证满足 \(a_{i,j}=p\) 的 \((i,j)\) 唯一。

数据范围:\(1\le n,m\le 300\),\(1\le p\le n\cdot m\)。


先记录 \(\tt vector\) 数组 \(w\),\(w_t\) 表示 \(a_{i,j}=t\) 的位置集合。

\(w_t\) 的每个元素有三个属性:\(x,y,g\)。\(x\) 和 \(y\) 是位置坐标,\(g\) 是出发遍历矩阵值 \(1\to t\) 后到 \((x,y)\) 的最短路径长度。


暴力做法:从 \(w_{i-1}\) 的所有 \(g\) 值递推 \(w_i\) 的所有 \(g\) 值:

\[u.g=\min_{v\in w_{i-1}}\{v.g+{\rm abs}(u.x-v.x)+{\rm abs}(u.y-v.y)\}(u\in w_i)
\]

时间复杂度 \(\Theta\left(\sum_{i\in[2,p]}|w_{i-1}|\cdot |w_i|\right)\le\Theta(n^2m^2)\)

  • 怎么卡到 \(\Theta(n^2m^2)\) 的?

比如 \(n=300,m=300,p=2\),矩阵一半是 \(1\) 一半是 \(2\)。


这题的优化是真的巧,反正我比赛时没想到。

考虑以下情况:

\[\forall i\in[2,p]:|w_{i-1}|\cdot|w_i|\le n\cdot m
\]

总的时间复杂度是:

\[\Theta\left(\sum_{i\in[2,p]}|w_{i-1}|\cdot |w_i|\right)
\]

同时满足 \(\sum_{i=1}^p |w_i|=n\cdot m\),根据柯西不等式:

\[\begin{split}
&\left(\sum_{i=2}^p|w_{i-1}|\cdot |w_i|\right)^2\\
\le&\sum_{i=1}^{p-1}|w_i|^2\sum_{i=2}^{p}|w_i|^2\\
\le&\left(\sum_{i=1}^{p}|w_i|^2\right)^2\\
\le&\left(\sqrt{n\cdot m}\times\left(\sqrt{n\cdot m}\right)^2\right)^2
\end{split}
\]

所以 \(\sum_{i=2}^p|w_{i-1}|\cdot |w_i|\le n\cdot m\times\sqrt{n\cdot m}\)。

复杂为 \(\Theta(n\cdot m\sqrt{n\cdot m})\) 可以通过。


但是如果 \(\exists i\in[2,p]:|w_{i-1}|\cdot|w_i|>n\cdot m\) 怎么办呢?

可以套个 \(\Theta(V)\) 的多源无向无权图最短路模板 \(\tt Bfs\)。

所以此时单次递推的时间复杂度也是 \(\Theta(n\cdot m)\)。

这样的单次递推与 \(|w_{i-1}|\cdot|w_i|=n\cdot m\) 相比:

  1. 一次递推时间复杂度相等。

  2. 由于对于这个 \(i\) 的 \(|w_{i-1}|\cdot|w_i|\) 大,所以对于其他 \(i\) 的 \(|w_{i-1}|\cdot|w_i|\) 较小。所以总时间复杂度小。

所以这样优化后总时间复杂度 \(\le \Theta(n\cdot m\sqrt{n\cdot m})\)。可以通过。


  • 代码:
//Data
const int N=3e2;
int n,m,k,a[N+7][N+7];
struct node{
int x,y,g;
node(int X=0,int Y=0,int G=0){x=X,y=Y,g=G;}
};
vector<node> w[N*N+7]; //Bfs
int d[N+7][N+7];
int tx[]={0,0,-1,1},ty[]={-1,1,0,0};
int ok(int x,int y){return 1<=x&&x<=n&&1<=y&&y<=m;}
void Bfs(vector<node>&s){ //多源无向无权图最短路模板 Bfs。
vector<node> q;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) d[i][j]=inf;
int sc=-1;
q.pb(s[++sc]);
for(int i=0;i<sz(q);i++){
node v=q[i];
while(sc+1<sz(s)&&s[sc+1].g<=v.g) q.pb(s[++sc]);
for(int t=0;t<4;t++){
node u=node(v.x+tx[t],v.y+ty[t]);
if(ok(u.x,u.y)&&v.g+1<d[u.x][u.y]) d[u.x][u.y]=u.g=v.g+1,q.pb(u);
}
}
} //Main
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
if(a[i][j]==1) w[a[i][j]].pb(node(i,j,i+j-2));
else w[a[i][j]].pb(node(i,j,inf));
}
for(int key=2;key<=k;key++){
if(sz(w[key-1])*sz(w[key])<=n*m){
for(node&u:w[key]) for(node v:w[key-1])
u.g=min(u.g,v.g+abs(u.x-v.x)+abs(u.y-v.y));
} else {
vector<node> s;
for(node v:w[key-1]) s.pb(v);
Bfs(s);
for(node&u:w[key]) u.g=d[u.x][u.y];
}
}
printf("%d\n",w[k][0].g);
return 0;
}

祝大家学习愉快!

题解-CF677D Vanya and Treasure的更多相关文章

  1. codeforces 677D D. Vanya and Treasure(二维线段树)

    题目链接: D. Vanya and Treasure time limit per test 1.5 seconds memory limit per test 256 megabytes inpu ...

  2. Codeforces Round #355 (Div. 2) D. Vanya and Treasure 分治暴力

    D. Vanya and Treasure 题目连接: http://www.codeforces.com/contest/677/problem/D Description Vanya is in ...

  3. Codeforces 677D Vanya and Treasure 暴力+BFS

    链接 Codeforces 677D Vanya and Treasure 题意 n*m中有p个type,经过了任意一个 type=i 的各自才能打开 type=i+1 的钥匙,最初有type=1的钥 ...

  4. CodeForces 677D. Vanya and Treasure 枚举行列

    677D. Vanya and Treasure 题意: 给定一张n*m的图,图上每个点标有1~p的值,你初始在(1,1)点,你必须按照V:1,2,3...p的顺序走图上的点,问你如何走时间最少. 思 ...

  5. 【12.78%】【codeforces 677D】Vanya and Treasure

    time limit per test1.5 seconds memory limit per test256 megabytes inputstandard input outputstandard ...

  6. 题解 CF492C Vanya and Exams

    CF492C Vanya and Exams 有了Pascal题解,来一波C++题解呀qwq.. 简单的贪心题 按b[i]从小到大排序,一个一个学科写直到达到要求即可 #include<cstd ...

  7. Codeforces Round #355 (Div. 2) D. Vanya and Treasure dp+分块

    题目链接: http://codeforces.com/contest/677/problem/D 题意: 让你求最短的从start->...->1->...->2->. ...

  8. Codeforces 677D - Vanya and Treasure - [DP+优先队列BFS]

    题目链接:http://codeforces.com/problemset/problem/677/D 题意: 有 $n \times m$ 的网格,每个网格上有一个棋子,棋子种类为 $t[i][j] ...

  9. CodeForces 677D Vanya and Treasure

    $dp$,树状数组. 很明显这是一个$DAG$上的$dp$,由于边太多,暴力$dp$会超时,需要优化. 例如计算$dp[x][y]$,可以将区域分成四块,$dp[x][y]$取四块中的最小值,每一块用 ...

随机推荐

  1. Linux mysql 修改密码 三种方式(转载)

    注明:本文为转载,原文地址:https://www.cnblogs.com/chuckjam/archive/2018/08/10/9456255.html 前言 有时我们会忘记Mysql的密码,或者 ...

  2. Nginx 解析漏洞复现

    一.漏洞描述 该漏洞与nginx.php版本无关,属于用户配置不当造成的解析漏洞 二.漏洞原理 1.由于nginx.conf的如下配置导致nginx把以'.php'结尾的文件交给fastcgi处理,为 ...

  3. 标准库之time,random,sys,os

    # import time # print(time.time()) # 时间戳 # print(time.mktime(time.localtime())) # 结构化时间转换为时间戳 # prin ...

  4. 思维导图软件iMindMap的使用方法

    从手绘的思维导图再到各种各样的思维导图的软件,思维导图的高效性大家都体会到了.思维导图软件iMindMap在众多导图软件中是最受欢迎的之一,下面就给大家分享一下思维导图怎么画: 首先我要教给大家的是如 ...

  5. 思维导图软件iMindMap怎么用模板制作思维导图

    随着思维导图的不断发展,市场上相关的软件也越来越多.像XMind.MindManager等.每一款软件都有它独特的亮点.作为众多思维导图软件中的一款,iMindMap算是比较亮眼的了.现在很多人都在用 ...

  6. H5系列之常用的语义元素

    H5添加了几个新标签,带有语义化的标签,像我们的div 和 span 标签,你说他两能干嘛呢, 好像他两什么事都能干.举个例子,你家里的房子,有几个房间,如果不分房间的话,是不是你 今天睡这里,明天睡 ...

  7. 线程池中状态与线程数的设计分析(ThreadPoolExecutor中ctl变量)

    目录 预备知识 源码分析 submit()源码分析 shutdownNow()源码分析 代码输出 设计目的与优点 预备知识 可以先看下我的另一篇文章对于Java中的位掩码BitMask的解释. 1.一 ...

  8. ELK---- Elasticsearch 使用ik中文分词器增加拓展热词

    进入到我们ik分词器安装目录下的config目录 cd /usr/local/myapp/elasticsearch-6.4.3/plugins/ik/configvi IKAnalyzer.cfg. ...

  9. 学习django笔记一:在urls.py中导入sign应用views文件的问题

    >python-admin startproject guest     #创建guest项目 >python3 manage.py startapp sign  #在guest项目中创建 ...

  10. mqProducer

    producer核心属性:生产者所属组,消息服务器在回查事物状态时会随机选择该组中任何一个生产者发起事务回查请求. createTopicKey:默认topicKey defaultTopicQueu ...