论文概况

Multi-Perspective Sentence Similarity Modeling with Convolution Neural Networks是处理比较两个句子相似度的问题, 适用于解决智能客服问题匹配场景中用户提交的问句与知识库中问句的匹配.

文章将整个问题的解决分成两部分:

  1. 对句子进行建模, 将句子转换为某种向量表示. 这部分使用CNN完成
  2. 两个句子相似度衡量的方式. 这里是新颖的地方.

然后将衡量计算得到的相似度向量投入到Dense层中, 再根据目标接Output层(如sigmoid层, softmax层等), 训练得到模型.

整体的结构如下:

按照模型的结构, 分成两部分阐述模型结构.

句子模型(sentence model)

整体模型如下图:


首先预训练一个embedding层, 将句子按词转换为embedding后的结果.

对于一个长度为SEQ_LEN的句子, 若embedding向量的长度为EMBED_SIZE, 那么输入到句子模型中的每个句子的数据矩阵为大小为(SEQ_LEN, EMBED_SIZE). 这里我们不考虑BATCH_SIZE的大小, 实际在模型中的Tensor, 只需在第一维上拼接上BATCH_SIZE即可.

论文中使用了两种卷积核:

  • 整体卷积核(holistic)

    这种卷积核就是我们正常使用的卷积核, 大小为(ws, A_num_filters).

    • ws为卷积核的window大小, 代表评价相邻的若干个词之间关系, 论文中取ws={1, 2, 3, SEQ_LEN}, 之所以有一种卷积核的windowSEQ_LEN, 是衡量整个句子的特征.
    • A_num_filters表示这个卷积核的通道数量, 论文中没有给出具体数值.

    文章中卷积核进行卷积都是采用valid方式, 造成输出序列长度减小. 具体来说, 对于此类卷积核的输出output_A的大小为(SEQ_LEN + 1 - ws, A_num_filters).

  • 单维卷积核(per-dimension)

    上面的卷积核是会对输入在EMBED_SIZE所有维上卷积相加得到一个输出. 这里的单维指的是一个卷积核只对输入向量的一个维度进行卷积, 输入向量有多长, 就有多少个卷积核, 考虑每个卷积核自己的通道数量, 因此单维卷积核的大小为(ws, EMBED_SIZE, B_num_filters).

    • ws在这里只取{1, 2}即可.

    • B_num_filters区别与A_num_filters, 即两种卷积核各自的通道数是不同的. 但同种卷积核的通道数是相同的.

    因此, 这种卷积核的输出output_B的大小为(SEQ_LEN + 1 - ws, EMBED_SIZE, B_num_filters).

    两种卷积核的输出维度不同, 但由于后文中计算相似度的特殊方式, 这里并不需要把结果展平.

池化层:

  • 对于整体卷积核, 使用{max, min, avg}三种池化层, 将它们的结果合并起来.
  • 对于单维卷积核, 使用{max, min}两种池化层, 将它们的结果合并起来.

相似度计算模型

引入三种计算距离的方式:

  • 余弦距离, L1距离, L2距离

组合成两种距离计算函数:

  • \(comU_1(\textbf{x}, \textbf{y})=\{\cos(\textbf{x}, \textbf{y}), L_2(\textbf{x}, \textbf{y}), L_1(\textbf{x}, \textbf{y})\}\)
  • \(comU_2(\textbf{x}, \textbf{y})=\{\cos(\textbf{x}, \textbf{y}), L_2(\textbf{x}, \textbf{y})\}\)

在输入经过不同的卷积层, 池化层之后, 会得到数据的结果, 我们不能简单的把所有的结果展开并拼接在一起, 组成一个大的向量, 然后计算相似度. 我们要考虑结果来源的相似程度, 具体来说, 从以下四个角度判断:

  • 结果是否来自同一个block, 即同一个输入, 同一种卷积核长度, 区别只在于池化层不同
  • 结果是否来自同一个卷积核长度
  • 结果是否来自同一个池化层
  • 结果是否来自相同的通道, 可以是不同卷积核

以上四种衡量标准对于两种卷积核是分开的, 即相互之间不比较. 而且计算相似度时独立.

论文中提出了两种算法计算句子的相似度, 这两种算法都是结合以上四种规则中, 至少满足两种, 才能认为来源相似, 从而分块计算相似度. 将每一块的相似度累加得到最终的两个句子的相似度.

算法如下:

其中算法1只能对整体卷积核使用, 算法2对两种卷积核都适用. 我们将算法计算得到的相似度向量在接上一个Dense层, 最后接Output层, 就得到了完整的模型结构.

论文阅读笔记: Multi-Perspective Sentence Similarity Modeling with Convolution Neural Networks的更多相关文章

  1. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  2. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  3. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  4. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  5. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  6. Nature/Science 论文阅读笔记

    Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...

  7. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

  8. 论文阅读笔记(十八)【ITIP2019】:Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification

    论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① P ...

  9. [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering

    [论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...

随机推荐

  1. 数字货币比特币以太坊买卖五档行情数据API接口

    数字货币比特币以太坊买卖五档行情数据API接口       数字货币一般包含比特币BTC.以太坊ETH.瑞波币XRP.泰达币USDT.比特币现金BCH.比特币SV.莱特币LTC.柚子币EOS.OKB. ...

  2. Python目录与文件操作

    一.判断一个路径是否存在 os.path.exists(path) 如果路径存在则返回True,否则返回False. import os import getpass # 获取当前系统用户名 user ...

  3. php使用curl来获取远程图片

    本文章来介绍php使用curl来获取远程图片实现方法,有需要了解采集远程图片的朋友不防进入参考. curl要求php环境支持才行. 可以运行phpinfo()函数是否支持,一般要将php.ini中;e ...

  4. 微信商户H5支付申请不通过被驳回解法,拒绝提示:网站有不实内容或不安全信息

    H5支付是指商户在微信客户端外的移动端网页展示商品或服务,用户在前述页面确认使用微信支付时,商户发起本服务呼起微信客户端进行支付.主要用于触屏版的手机浏览器请求微信支付的场景.可以方便从外部浏览器唤起 ...

  5. SpringCloud Alibaba Nacos 服务治理中心

    目录 一.什么是Nacos? 二.Nacos能干吗? 三.Nacos关键特性 四.Nacos中的基本概念 五.如何安装部署Nacos? 六.Nacos数据持久化 一.什么是Nacos? 英文全称Dyn ...

  6. Python淘宝商品比价定向爬虫

    1.项目基本信息 目标: 获取淘宝搜索页面的信息,提取其中的商品名称和价格理解: 淘宝的搜索接口.翻页的处理 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道 ...

  7. Mysql性能参数优化

    1.Max_connections (1)简介 Mysql的最大连接数,如果服务器的并发请求量比较大,可以调高这个值,当然这是要建立在机器能够支撑的情况下,因为如果连接数越来越多,mysql会为每个连 ...

  8. 文本三剑客之sed的用法

    第1章            Sed命令 1.1  sed 命令执行过程 1.2  sed介绍 sed是一种流编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(p ...

  9. 原生javaScript导出表格数据

    <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8&quo ...

  10. Agumaster添加股票日交易爬虫画面