deconv的其中一个用途是做upsampling,即增大图像尺寸。

dilated convolution:

dilated conv,中文可以叫做空洞卷积或者扩张卷积。

首先是诞生背景,在图像分割领域,图像输入到CNN(典型的网络比如FCN[3])中,FCN先像传统的CNN那样对图像做卷积再pooling,降低图像尺寸的同时增大感受野,但是由于图像分割预测是pixel-wise的输出,所以要将pooling后较小的图像尺寸upsampling到原始的图像尺寸进行预测(upsampling一般采用deconv反卷积操作)
之前的pooling操作使得每个pixel预测都能看到较大感受野信息。因此图像分割FCN中有两个关键,一个是pooling减小图像尺寸增大感受野,另一个是upsampling扩大图像尺寸。在先减小再增大尺寸的过程中,肯定有一些信息损失掉了,那么能不能设计一种新的操作,不通过pooling也能有较大的感受野看到更多的信息呢?答案就是dilated conv。

(a)图对应3x3的1-dilated conv,和普通的卷积操作一样,(b)图对应3x3的2-dilated conv,实际的卷积kernel size还是3x3,但是空洞为1,也就是对于一个7x7的图像patch,只有9个红色的点和3x3的kernel发生卷积操作,其余的点略过。也可以理解为kernel的size为7x7,但是只有图中的9个点的权重不为0,其余都为0。 可以看到虽然kernel size只有3x3,但是这个卷积的感受野已经增大到了7x7(如果考虑到这个2-dilated conv的前一层是一个1-dilated conv的话,那么每个红点就是1-dilated的卷积输出,所以感受野为3x3,所以1-dilated和2-dilated合起来就能达到7x7的conv),(c)图是4-dilated conv操作,同理跟在两个1-dilated和2-dilated conv的后面,能达到15x15的感受野。对比传统的conv操作,3层3x3的卷积加起来,stride为1的话,只能达到(kernel-1)*layer+1=7的感受野,也就是和层数layer成线性关系,而dilated conv的感受野是指数级的增长。
 
dilated的好处是不做pooling损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。在图像需要全局信息或者语音文本需要较长的sequence信息依赖的问题中,都能很好的应用dilated conv,比如图像分割[3]、语音合成WaveNet[2]、机器翻译ByteNet[1]中。简单贴下ByteNet和WaveNet用到的dilated conv结构,可以更形象的了解dilated conv本身

deconv的其中一个用途是做upsampling,即增大图像尺寸。而dilated conv并不是做upsampling,而是增大感受野。

可以形象的做个解释:

对于标准的k*k卷积操作,stride为s,分三种情况:

(1) s>1,即卷积的同时做了downsampling,卷积后图像尺寸减小;

(2) s=1,普通的步长为1的卷积,比如在tensorflow中设置padding=SAME的话,卷积的图像输入和输出有相同的尺寸大小;

(3) 0<s<1,fractionally strided convolution,相当于对图像做upsampling。比如s=0.5时,意味着在图像每个像素之间padding一个空白的像素后,stride改为1做卷积,得到的feature map尺寸增大一倍。

而dilated conv不是在像素之间padding空白的像素,而是在已有的像素上,skip掉一些像素,或者输入不变,对conv的kernel参数中插一些0的weight,达到一次卷积看到的空间范围变大的目的。

当然将普通的卷积stride步长设为大于1,也会达到增加感受野的效果,但是stride大于1就会导致downsampling,图像尺寸变小。大家可以从以上理解到deconv,dilated conv,pooling/downsampling,upsampling之间的联系与区别,欢迎留言沟通交流。

DCGAN[5]中使用deconv就更自然了,本身GAN就需要generative model,需要通过deconv从特定分布的输入数据中生成图片。GAN这种模式被Yann LeCun特别看好,认为是unsupervised learning的一个未来。

fractional-strided convolution:

反卷积有时候也被叫做Fractionally Strided Convolution,翻译过来大概意思就是小数步长的卷积。对于步长 s>1的卷积,我们可能会想到其对应的反卷积步长 s′<1。

对于反卷积操作的小数步长我们可以理解为:在其输入特征单元之间插入 s−1 个0,插入0后把其看出是新的特征输入,然后此时步长 s′ 不再是小数而是为1。

详见网址:https://my.oschina.net/u/3702502/blog/1803358 http://www.mamicode.com/info-detail-2321005.html

dilated conv、deconv、fractional-strided conv的更多相关文章

  1. AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

    接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言 ...

  2. 一文搞懂 deconvolution、transposed convolution、sub-­pixel or fractional convolution

    目录 写在前面 什么是deconvolution convolution过程 transposed convolution过程 transposed convolution的计算 整除的情况 不整除的 ...

  3. CNN中各类卷积总结:残差、shuffle、空洞卷积、变形卷积核、可分离卷积等

    CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中 ...

  4. MySQL 系列(三)你不知道的 视图、触发器、存储过程、函数、事务、索引、语句

    第一篇:MySQL 系列(一) 生产标准线上环境安装配置案例及棘手问题解决 第二篇:MySQL 系列(二) 你不知道的数据库操作 第三篇:MySQL 系列(三)你不知道的 视图.触发器.存储过程.函数 ...

  5. Reflector、reflexil、De4Dot、IL指令速查表

    http://files.cnblogs.com/files/quejuwen/ReflectorInstaller.rar http://files.cnblogs.com/files/quejuw ...

  6. MSIL 教程(二):数组、分支、循环、使用不安全代码和如何调用Win32 API(转)

    转自:http://www.cnblogs.com/Yahong111/archive/2007/08/16/857574.html 续上文[翻译]MSIL 教程(一) ,本文继续讲解数组.分支.循环 ...

  7. Python自动化运维之18、Python操作 MySQL、pymysql、SQLAchemy

    一.MySQL 1.概述 什么是数据库 ? 答:数据的仓库,和Excel表中的行和列是差不多的,只是有各种约束和不同数据类型的表格 什么是 MySQL.Oracle.SQLite.Access.MS ...

  8. 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

    一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...

  9. 一周总结:AutoEncoder、Inception 、模型搭建及下周计划

    一周总结:AutoEncoder.Inception .模型搭建及下周计划   1.AutoEncoder: AutoEncoder: 自动编码器就是一种尽可能复现输入信号的神经网络:自动编码器必须捕 ...

随机推荐

  1. 容器云平台No.10~通过gogs+drone+kubernetes实现CI/CD

    什么是CI/CD 持续集成(Continous Intergration,CI)是一种软件开发实践,即团队开发成员经常集成它们的工作,通常每个成员每天至少集成一次,也就意味着每天可能会发生多次集成.每 ...

  2. Vulkan在Android使用Compute shader

    oeip 相关功能只能运行在window平台,想移植到android平台,暂时选择vulkan做为图像处理,主要一是里面有单独的计算管线且支持好,二是熟悉下最新的渲染技术思路. 这个 demo(git ...

  3. Flutter音频播放--chewie_player的基本使用

    发现网络似乎没有关于简单音频播放的插件介绍,这几天找了一下,结果也都不尽人意,最后也是debug一下chewie_player插件的官方demo 先上官方demo图 官方git地址:https://g ...

  4. 刷题[MRCTF2020]套娃

    解题思路 查看源码,发现注释中存在代码 //1st $query = $_SERVER['QUERY_STRING']; if( substr_count($query, '_') !== 0 || ...

  5. 802.1X 账号密码+设备信息双重认证

    名词解释 802.1X: IEEE802 LAN/WAN 委员会为解决无线局域网网络安全问题,提出了 802.1X 协议.后来,802.1X协议作为局域网端口的一个普通接入控制机制在以太网中被广泛应用 ...

  6. 原创-公司项目部署交付环境预检查shell脚本

    大型项目环境预检查脚本,根据自己实际情况修改脚本中变量,给大家一个思路~ #!/usr/bin/env bash root=$( cd $(dirname $0) pwd ) source " ...

  7. mysql-9-limit

    #进阶9:分页查询 /* 当要显示的数据,一页显示不全,需要分页提交sql请求 SELECT FROM JOIN ON WHERE GROUP BY HAVING ORDER BY LIMIT off ...

  8. sqli-labs第一关 详解

    sqli-labs第一关 方法一:手工注入 方法二:sqlmap工具 两种方式,都可以学学,顺便学会用sqlmap,也是不错的.不多说,我们开始吧 方法一: 来到第一关,图上说我们需要一个数字的参数 ...

  9. P4715 【深基16.例1】淘汰赛

    P4715 [深基16.例1]淘汰赛 题目描述 有 2^n(n≤7) 个国家参加世界杯决赛圈且进入淘汰赛环节.我经知道各个国家的能力值,且都不相等.能力值高的国家和能力值低的国家踢比赛时高者获胜.1 ...

  10. [JZOJ]2109 清兵线 题解

    ## [JZOJ]2109 清兵线 题解 **FIRST 题目大意** 给你一些正整数,这些正整数为数轴上若干个点代表的数.现求:假设从原点出发,走m以内(包括m)的距离最多能够访问多少个点,输出m- ...