【NOIP2017提高A组模拟9.7】JZOJ 计数题
【NOIP2017提高A组模拟9.7】JZOJ 计数题
题目
Description

Input

Output

Sample Input
5
2 2 3 4 5
Sample Output
8
6
Data Constraint

题解
题意
给出\(a[i]\),有一完全图,\(i\)与\(j\)之间的边的值为\(a[i] \oplus a[j]\)(\(\oplus\)为异或的意思)
求最小生成树及方案数
题解
科普一个东西,\(n\)个点的完全图的生成树个数是\(n^{n-2}\)
这个东西叫做凯莱定理,大家可以自行了解一下
100\(\%\)
看到异或,而且要最小,且\(a[i]\)二进制做多只有30位
想到可以按照最高位往下分治,分成当前这位是0和1的两堆,然后为了取值最小,那么这两堆只能连一条
那么就找到这两堆里面异或值最小的,这是\(trie\)应用的经典问题
然后分治一位一位往下
最后把所有最小值加一起,方案数乘起来即可
Code
#include<cmath>
#include<cstdio>
#include<algorithm>
#define mod 1000000007
using namespace std;
long long n,mx,num,ans,ans1,tot,a[1000001],er[31],c1[1000001],c2[1000001];
struct node
{
long long left,right,size;
}trie[400005];
long long read()
{
long long res=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') res=(res<<1)+(res<<3)+(ch-'0'),ch=getchar();
return res;
}
void insert(long long x)
{
long long now=1;
++trie[now].size;
for (long long i=mx;i>=0;--i)
{
if (x&er[i])
{
if (trie[now].left==0) trie[now].left=++num,trie[num].left=trie[num].right=trie[num].size=0;
now=trie[now].left;
++trie[now].size;
}
else
{
if (trie[now].right==0) trie[now].right=++num,trie[num].left=trie[num].right=trie[num].size=0;
now=trie[now].right;
++trie[now].size;
}
}
}
long long calc(long long x)
{
long long now=1,s=0;
for (long long i=mx;i>=0;--i)
{
if (x&er[i])
{
if (trie[trie[now].left].size>0) now=trie[now].left;
else s+=er[i],now=trie[now].right;
}
else
{
if (trie[trie[now].right].size>0) now=trie[now].right;
else s+=er[i],now=trie[now].left;
}
}
tot=trie[now].size;
return s;
}
long long ksm(long long x,long long y)
{
long long res=1;
while (y)
{
if (y&1) res=res*x%mod;
x=x*x%mod;
y>>=1;
}
return res;
}
long long dg(long long l,long long r,long long d)
{
if (r<=l) return 1;
if (d<0) return ksm(r-l+1,r-l-1);
long long t1=0,t2=0;
for (long long i=l;i<=r;++i)
{
if (a[i]&er[d]) c1[++t1]=a[i];
else c2[++t2]=a[i];
}
for (long long i=1;i<=t1;++i)
a[l+i-1]=c1[i];
for (long long i=1;i<=t2;++i)
a[l+t1+i-1]=c2[i];
long long s1=dg(l,l+t1-1,d-1),s2=dg(l+t1,r,d-1);
long long s3=(s1*s2)%mod,s4=2147483647,s5=0;
if (t1==0||t2==0) return s3;
num=1;
trie[1].left=trie[1].right=trie[1].size=0;
for (long long i=1;i<=t1;++i)
insert(a[l+i-1]);
for (long long i=1;i<=t2;++i)
{
long long sum=calc(a[l+t1+i-1]);
if (sum<s4) s4=sum,s5=tot;
else if (sum==s4) s5=(s5+tot)%mod;
}
ans+=s4;
return (s3*s5)%mod;
}
int main()
{
freopen("jst.in","r",stdin);
freopen("jst.out","w",stdout);
n=read();
for (long long i=1;i<=n;++i)
a[i]=read(),mx=max(mx,a[i]);
mx=log2(mx);
er[0]=1;
for (long long i=1;i<=31;++i)
er[i]=er[i-1]*2%mod;
num=1;
ans1=dg(1,n,mx);
printf("%lld\n%lld\n",ans,ans1);
fclose(stdin);
fclose(stdout);
return 0;
}
【NOIP2017提高A组模拟9.7】JZOJ 计数题的更多相关文章
- JZOJ 【NOIP2017提高A组模拟9.14】捕老鼠
JZOJ [NOIP2017提高A组模拟9.14]捕老鼠 题目 Description 为了加快社会主义现代化,建设新农村,农夫约(Farmer Jo)决定给农庄里的仓库灭灭鼠.于是,猫被农夫约派去捕 ...
- JZOJ 100029. 【NOIP2017提高A组模拟7.8】陪审团
100029. [NOIP2017提高A组模拟7.8]陪审团 Time Limits: 1000 ms Memory Limits: 131072 KB Detailed Limits Got ...
- JZOJ 5328. 【NOIP2017提高A组模拟8.22】世界线
5328. [NOIP2017提高A组模拟8.22]世界线 (File IO): input:worldline.in output:worldline.out Time Limits: 1500 m ...
- JZOJ 5329. 【NOIP2017提高A组模拟8.22】时间机器
5329. [NOIP2017提高A组模拟8.22]时间机器 (File IO): input:machine.in output:machine.out Time Limits: 2000 ms M ...
- JZOJ 5307. 【NOIP2017提高A组模拟8.18】偷窃 (Standard IO)
5307. [NOIP2017提高A组模拟8.18]偷窃 (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB Description ...
- JZOJ 5286. 【NOIP2017提高A组模拟8.16】花花的森林 (Standard IO)
5286. [NOIP2017提高A组模拟8.16]花花的森林 (Standard IO) Time Limits: 1000 ms Memory Limits: 131072 KB Descript ...
- JZOJ 5305. 【NOIP2017提高A组模拟8.18】C (Standard IO)
5305. [NOIP2017提高A组模拟8.18]C (Standard IO) Time Limits: 1000 ms Memory Limits: 131072 KB Description ...
- 【NOIP2017提高A组模拟9.17】信仰是为了虚无之人
[NOIP2017提高A组模拟9.17]信仰是为了虚无之人 Description Input Output Sample Input 3 3 0 1 1 7 1 1 6 1 3 2 Sample O ...
- 【NOIP2017提高A组模拟9.17】猫
[NOIP2017提高A组模拟9.17]猫 题目 Description 信息组最近猫成灾了! 隔壁物理组也拿猫没办法. 信息组组长只好去请神刀手来帮他们消灭猫.信息组现在共有n 只猫(n 为正整数) ...
随机推荐
- 01 . Go语言的SSH远程终端及WebSocket
Crypto/ssh简介 使用 下载 go get "github.com/mitchellh/go-homedir" go get "golang.org/x/cryp ...
- CF716D Complete The Graph
图论+构造 首先可以发现如果去除了可以改变权值的边,$s$到$t$的最短路若小于$l$,那么一定不行 若等于则直接将可改边权的边改为inf,输出即可 那么现在原图中的最短路是大于$l$的 因为每一条边 ...
- Centos7系统kvm虚机忘记密码进不去, 通过宿主机修改/etc/shadow文件改密码,重启后系统起不来故障排错
问题描述 某天, 因为其他项目组交接问题, kvm里面的堡垒机系统用户root密码登录不上,然后他通过宿主机修改/etc/shadow文件修改密码,但是修改完后重启系统后发现kvm宿主机连接不上虚机了 ...
- BIM+GIS它们各有什么优缺点
BIM+GIS它们各有什么优缺点?应用有哪些优势?BIM模型精细程度高,语义信息丰富,侧重整合和管理建筑物自身所有阶段信息,包括建筑物所有微观图形化和非图形化信息,三维GIS侧重宏观.大范围地理环境与 ...
- martini-拓扑映射
如何为一个新的分子创建拓扑文件? 这是martini应用的关键.http://jerkwin.github.io/2016/08/31/Martini%E5%B8%B8%E8%A7%81%E9%97% ...
- MVCC(转)
什么是 MVCC MVCC (Multiversion Concurrency Control) 中文全程叫多版本并发控制,是现代数据库(包括 MySQL.Oracle.PostgreSQL 等)引擎 ...
- python执行rados命令例子
前言 我们以前的管理平台在python平台下面做的,内部做的一些操作采用的是命令执行,然后解析的方式去做的,ceph自身有python的rados接口,可以直接调用原生接口,然后直接解析json的方式 ...
- 01Java环境安装监测
下载安装JDK JDK:Java开发套件 JDK下载 监测JDK安装是否成功 运行Java命令 运行Javac命令
- Java中常量池详解
在Java的内存分配中,总共3种常量池: 转发链接:https://blog.csdn.net/zm13007310400/article/details/77534349 1.字符串常量池(Stri ...
- kali ms17_010 内网环境下渗透笔记
一.先用Router Scan 扫描 看清楚了网络拓扑结构. 二.使用MS17-010批量扫描工具 下载:ms17-010Scan.exe (也可以用kali自带的nmap和ms17-10模块扫) ...