RandomForest 随机森林算法与模型参数的调优
公号:码农充电站pro
主页:https://codeshellme.github.io
本篇文章来介绍随机森林(RandomForest)算法。
1,集成算法之 bagging 算法
在前边的文章《AdaBoost 算法-分析波士顿房价数据集》中,我们介绍过集成算法。集成算法中有一类算法叫做 bagging 算法。
bagging 算法是将一个原始数据集随机抽样成 N 个新的数据集。然后将这 N 个新的数据集作用于同一个机器学习算法,从而得到 N 个模型,最终集成一个综合模型。
在对新的数据进行预测时,需要经过这 N 个模型(每个模型互不依赖干扰)的预测(投票),最终综合 N 个投票结果,来形成最后的预测结果。
bagging 算法的流程可用下图来表示:

2,随机森林算法
随机森林算法是 bagging 算法中比较出名的一种。
随机森林算法由多个决策树分类器组成,每一个子分类器都是一棵 CART 分类回归树,所以随机森林既可以做分类,又可以做回归。
当随机森林算法处理分类问题的时候,分类的最终结果是由所有的子分类器投票而成,投票最多的那个结果就是最终的分类结果。
当随机森林算法处理回归问题的时候,最终的结果是每棵 CART 树的回归结果的平均值。
3,随机森林算法的实现
sklearn 库即实现了随机森林分类树,又实现了随机森林回归树:
RandomForestClassifier 类的原型如下:
RandomForestClassifier(n_estimators=100,
criterion='gini', max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
bootstrap=True, oob_score=False,
n_jobs=None, random_state=None,
verbose=0, warm_start=False,
class_weight=None, ccp_alpha=0.0,
max_samples=None)
可以看到分类树的参数特别多,我们来介绍几个重要的参数:
- n_estimators:随机森林中决策树的个数,默认为 100。
- criterion:随机森林中决策树的算法,可选的有两种:
- gini:基尼系数,也就是 CART 算法,为默认值。
- entropy:信息熵,也就是 ID3 算法。
- max_depth:决策树的最大深度。
RandomForestRegressor 类的原型如下:
RandomForestRegressor(n_estimators=100,
criterion='mse', max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
bootstrap=True, oob_score=False,
n_jobs=None, random_state=None,
verbose=0, warm_start=False,
ccp_alpha=0.0, max_samples=None)
回归树中的参数与分类树中的参数基本相同,但 criterion 参数的取值不同。
在回归树中,criterion 参数有下面两种取值:
- mse:表示均方误差算法,为默认值。
- mae:表示平均误差算法。
4,随机森林算法的使用
下面使用随机森林分类树来处理鸢尾花数据集,该数据集在《决策树算法-实战篇》中介绍过,这里不再介绍,我们直接使用它。
首先加载数据集:
from sklearn.datasets import load_iris
iris = load_iris() # 准备数据集
features = iris.data # 获取特征集
labels = iris.target # 获取目标集
将数据分成训练集和测试集:
from sklearn.model_selection import train_test_split
train_features, test_features, train_labels, test_labels =
train_test_split(features, labels, test_size=0.33, random_state=0)
接下来构造随机森林分类树:
from sklearn.ensemble import RandomForestClassifier
# 这里均使用默认参数
rfc = RandomForestClassifier()
# 训练模型
rfc.fit(train_features, train_labels)
estimators_ 属性中存储了训练出来的所有的子分类器,来看下子分类器的个数:
>>> len(rfc.estimators_)
100
预测数据:
test_predict = rfc.predict(test_features)
测试准确率:
>>> from sklearn.metrics import accuracy_score
>>> accuracy_score(test_labels, test_predict)
0.96
5,模型参数调优
在机器学习算法模型中,一般都有很多参数,每个参数都有不同的取值。如何才能让模型达到最好的效果呢?这就需要参数调优。
sklearn 库中有一个 GridSearchCV 类,可以帮助我们进行参数调优。
我们只要告诉它想要调优的参数有哪些,以及参数的取值范围,它就会把所有的情况都跑一遍,然后告诉我们参数的最优取值。
先来看下 GridSearchCV 类的原型:
GridSearchCV(estimator,
param_grid, scoring=None,
n_jobs=None, refit=True,
cv=None, verbose=0,
pre_dispatch='2*n_jobs',
error_score=nan,
return_train_score=False)
其中有几个重要的参数:
- estimator:表示为哪种机器学习算法进行调优,比如随机森林,决策树,SVM 等。
- param_grid:要优化的参数及取值,输入的形式是字典或列表。
- scoring:准确度的评价标准。
- cv:交叉验证的折数,默认是三折交叉验证。
下面我们对随机森林分类树进行参数调优,还是使用鸢尾花数据集。
首先载入数据:
from sklearn.datasets import load_iris
iris = load_iris()
构造分类树:
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
如果我们要对分类树的 n_estimators 参数进行调优,调优的范围是 [1, 10],则准备变量:
param = {"n_estimators": range(1,11)}
创建 GridSearchCV 对象,并调优:
from sklearn.model_selection import GridSearchCV
gs = GridSearchCV(estimator=rfc, param_grid=param)
# 对iris数据集进行分类
gs.fit(iris.data, iris.target)
输出最优准确率和最优参数:
>>> gs.best_score_
0.9666666666666668
>>> gs.best_params_
{'n_estimators': 7}
可以看到,最优的结果是 n_estimators 取 7,也就是随机森林的子决策树的个数是 7 时,随机森林的准确度最高,为 0.9667。
6,总结
本篇文章主要介绍了随机森林算法的原理及应用,并展示了如何使用 GridSearchCV 进行参数调优。
(本节完。)
推荐阅读:
欢迎关注作者公众号,获取更多技术干货。

RandomForest 随机森林算法与模型参数的调优的更多相关文章
- R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...
- R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...
- Python机器学习笔记——随机森林算法
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...
- 用Python实现随机森林算法,深度学习
用Python实现随机森林算法,深度学习 拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩 ...
- 随机森林算法demo python spark
关键参数 最重要的,常常需要调试以提高算法效果的有两个参数:numTrees,maxDepth. numTrees(决策树的个数):增加决策树的个数会降低预测结果的方差,这样在测试时会有更高的accu ...
- H2O中的随机森林算法介绍及其项目实战(python实现)
H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...
- 随机森林算法-Deep Dive
0-写在前面 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出.简单来说,是一种bagging的思想,采用bootstra ...
- spark 随机森林算法案例实战
随机森林算法 由多个决策树构成的森林,算法分类结果由这些决策树投票得到,决策树在生成的过程当中分别在行方向和列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数 ...
- 随机森林算法OOB_SCORE最佳特征选择
RandomForest算法(有监督学习),可以根据输入数据,选择最佳特征组合,减少特征冗余:原理:由于随机决策树生成过程采用的Boostrap,所以在一棵树的生成过程并不会使用所有的样本,未使用的样 ...
随机推荐
- 【Django 局域网配置】
默认方法启动django python manage.py runserver 这时启动的服务只能在本机访问,这是因为服务只向本机(127.0.0.1:8000)提供,所以局域网的其他机器不能访问. ...
- emca配置EM
EM DC(Enterprise Manager Database Control)是 web 界面的数据库管理工具, 可用于配置 EM DC环境的工具包括: Oracle Universal In ...
- double类型和int类型的区别
引例: double a=19*3.3; System.out.print(a); 结果为62.9999996,不是62.7:这里不单纯是因为给的是double类型 (1) 62.7 和 62.699 ...
- vue 按键修饰符 keyup
按键修饰符 keyup 通过官方文档可查询到特殊的按键修饰符 .enter .tab .delete (捕获"删除"和"退格"键) .esc .space .u ...
- 为什么 HashMap 的容量大小要设置为2的N次方?
原文链接:https://www.changxuan.top/?p=1208 前两天,我在一位同学提交中看到了下面这样的一行代码,让我很是惊讶. Map<String, String> t ...
- 上传报错,ITMS-90167,解决办法
ERROR ITMS-90167 No .app bundles found in the package 报这个错误的原因是上传工具的版本问题或者本地网络问题. 解决办法是使用在线最新的上传工具,推 ...
- 【Azure App Service】C#下制作的网站,所有网页本地测试运行无误,发布至Azure之后,包含CHART(图表)的网页打开报错,错误消息为 Runtime Error: Server Error in '/' Application
问题描述 C#下制作的网站,所有网页本地测试运行无误,发布至Azure之后,包含CHART(图表)的网页打开报错,错误消息为 Runtime Error: Server Error in '/' Ap ...
- day113:MoFang:种植园商城页面&充值集成Alipay完成支付的准备工作
目录 1.种植园商城页面初始化 2.规划商品种类并且构建关于商品的模型类 3.解决APP打包编译之后的跨域限制 4.商品列表后端接口实现 5.前端获取商品列表并显示 6.种植园点击充值允许用户选择充值 ...
- SpringBoot+Vue 前后端合并部署
前后端分离开发项目 前端vue项目 服务端springboot项目 如何将vue的静态资源整合到springboot项目里,通过启动jar包的方式部署服务. 前端项目执行npm run build 命 ...
- 【代码周边】npm是What?
社区 程序员自古以来就有社区文化: 社区的意思是:拥有共同职业或兴趣的人们,自发组织在一起,通过分享信息和资源进行合作.虚拟社区的参与者经常会在线讨论相关话题,或访问某些网站.前端程序员也有社区,世界 ...