写在前面

  • 感谢巨佬 yu__xuan 的帮助!
  • 原本题解区的大佬们大都写的九层循环,其实此题如果写成状压,可以将这九层循环写成一层,非但简洁、代码可读性强,常数也比直接九维 dp 小。

算法思路

由于每一行都只有四张牌,考虑写成五进制状压 dp。

设当前状态为 \(t\),则五进制状压 dp 取出第 \(i\) 行的状态的方式:\(\frac{t}{5^i}\!\!\!\!\mod 5\)(视初始行为第 \(0\) 行)

因此,若设第 \(i\) 行的第 \(j\) 张牌的点数为 \(a_{i,j}\),则状态转移方程为:

\[\large f_{t - 5^{p1} - 5^{p2}} = f_{t - 5^{p1} - 5^{p2}} + f_t \times p(a_{p1,\frac{t}{5^p1}\!\!\!\!\mod 5} = a_{p2,\frac{t}{5^p2}\!\!\!\!\mod 5})
\]

其中 \(p\) 为此次转移的概率,等于从状态 \(t\) 能转移到的状态数总和的倒数。

边界条件: \(f_{5^9 - 1} = 1\)。

倒序枚举所有状态,每当找到一个当前答案不为 \(0\) 的状态时,先统计出它能更新到的状态数,算出转移的概率 \(P\),然后用该状态去更新它所能更新到的状态的答案。

由于一直在拿牌,表示状态的变量会逐渐减小,倒序枚举状态时可行的。

Tips

  • 读入的时候用类似于快速读入的方式过滤一下不合法字符可以极大地简化读入部分的代码。

  • 扑克牌的点数不等同于真实的扑克牌的点数,因此统计的时候不需要再对点数进行处理,直接将 char 转成 int 存下来即可。

Code

#include<bits/stdc++.h>
#define LF double const int pow5[] = {1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125};
using namespace std; LF f[1953125];
int a[10][5]; char Getch() {char ch = getchar(); while((!isalpha(ch)) && (!isdigit(ch))) ch = getchar(); return ch;} int main() {
for(register int i = 0; i < 9; ++i) {
for(register int j = 1; j <= 4; ++j) {
a[i][j] = Getch(); Getch();
}
}
f[1953124] = 1.0;
for(register int t = pow5[9] - 1; t >= 0; --t) {
if(f[t] == 0) continue;
LF choise = 0;
for(register int p1 = 0; p1 < 9; ++p1) {
for(register int p2 = p1 + 1; p2 < 9; ++p2) {
if((a[p1][t / pow5[p1] % 5] == a[p2][t / pow5[p2] % 5]) && ((t / pow5[p1] % 5) > 0) && ((t / pow5[p2] % 5) > 0)) choise++;
}
}
LF P = f[t] * 1.0 / choise;
for(register int p1 = 0; p1 < 9; ++p1) {
for(register int p2 = p1 + 1; p2 < 9; ++p2) {
if((a[p1][t / pow5[p1] % 5] == a[p2][t / pow5[p2] % 5]) && ((t / pow5[p1] % 5) > 0) && ((t / pow5[p2] % 5) > 0)) {
f[t - pow5[p1] - pow5[p2]] += P;
}
}
}
}
printf("%lf", f[0]);
return 0;
}

P1837 单人纸牌的更多相关文章

  1. P1837 单人纸牌_NOI导刊2011提高(04)

    题目描述 单人纸牌游戏,共36张牌分成9叠,每叠4张牌面向上.每次,游戏者可以从某两个不同的牌堆最顶上取出两张牌面相同的牌(如黑桃10和梅花10)并且一起拿走.如果最后所有纸牌都被取走,则游戏者就赢了 ...

  2. 单人纸牌_NOI导刊2011提高(04)

    单人纸牌 时间限制: 1 Sec  内存限制: 128 MB 题目描述 单人纸牌游戏,共 36 张牌分成 9 叠,每叠 4 张牌面向上.每次,游戏者可以从某两个不同的牌堆最顶上取出两张牌面相同的牌(如 ...

  3. linux快捷键及主要命令(转载)

    作者:幻影快递Linux小组 翻译 2004-10-05 22:03:01 来自:Linux新手管理员指南(中文版) 5.1 Linux基本的键盘输入快捷键和一些常用命令 5.2 帮助命令 5.3 系 ...

  4. code vs 1098 均分纸牌(贪心)

    1098 均分纸牌 2002年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解   题目描述 Description 有 N 堆纸牌 ...

  5. C语言-纸牌计算24点小游戏

    C语言实现纸牌计算24点小游戏 利用系统时间设定随机种子生成4个随机数,并对4个数字之间的运算次序以及运算符号进行枚举,从而计算判断是否能得出24,以达到程序目的.程序主要功能已完成,目前还有部分细节 ...

  6. 一起来做webgame,《Javascript蜘蛛纸牌》

    不得不说,做游戏是会上瘾的,这次带来的是win系统上的经典游戏<蜘蛛纸牌>,不能完美,但求一玩 移牌 0 次 Javascript game_蜘蛛纸牌 正在努力加载... // " ...

  7. 洛谷 P1031 均分纸牌 Label:续命模拟QAQ

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  8. 斯坦福iOS7公开课1-3笔记及纸牌Demo

    1.MVC Model:模型 描述程序是什么,例如数据库操作之类的行文以及纸牌Demo里纸牌玩法都是写在Model这一层,通过Notification和KVO(后续文章会介绍)两种方式与Control ...

  9. [CareerCup] 8.1 Implement Blackjack 实现21点纸牌

    8.1 Design the data structures for a generic deck of cards. Explain how you would subclass the data ...

随机推荐

  1. [leetcode]64Minimum Path Sum 动态规划

    /** * Given a m x n grid filled with non-negative numbers, * find a path from top left to bottom rig ...

  2. JAVA的一些笔记

    /*一般函数与构造函数的区别 构造函数:对象创建时,就会调用与之对应的构造函数,对对象进行初始化 一般函数:对象创建时,需要函数功能时才调用 构造函数:一个对象对象创建时,只调用一次 一般函数:对象创 ...

  3. excel字符串拼接

    函数:CONCATENATE() 参数可以是文本值.数字或单元格引用. 文本值和数字使用双引号括住,单元格引用直接使用.例如 =CONCATENATE("abc",A2),设A2为 ...

  4. codeforces 1451D,一道有趣的博弈论问题

    大家好,欢迎来到codeforces专题. 今天选择的问题是Contest 1451场的D题,这是一道有趣简单的伪博弈论问题,全场通过的人有3203人.难度不太高,依旧以思维为主,坑不多,非常友好. ...

  5. mysql远程访问被拒绝问题

    远程连接MySql数据库时: ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES) 远 ...

  6. python之shelve、xml、configparser模块

    一.shelve模块 shelve模块比pickle模块简单,只有一个open函数,返回类似字典的对象,可读可写;key必须为字符串,而值可以是python所支持的数据类型 import shelve ...

  7. 风炫安全web安全学习第二十九节课 CSRF防御措施

    风炫安全web安全学习第二十九节课 CSRF防御措施 CSRF防御措施 增加token验证 对关键操作增加token验证,token值必须随机,每次都不一样 关于安全的会话管理(SESSION) 不要 ...

  8. Lagom 官方文档之随手记

    引言 Lagom是出品Akka的Lightbend公司推出的一个微服务框架,目前最新版本为1.6.2.Lagom一词出自瑞典语,意为"适量". https://www.lagomf ...

  9. #2020征文-TV# Tab切换选项卡同时更换内容

    Tab选项卡是应用程序中最最常用,也是最普遍存在的一种布局形态,无论是在PC端还是在移动端,都是一种清晰明了,层级关系简单的,能够使用户明确所处位置.Tab选项卡可以置于页面的底部,比如微信底部选项卡 ...

  10. VMware 安装 Centos7 超详细过程

    https://www.runoob.com/w3cnote/vmware-install-centos7.html centos7安装参考文档 VMware 安装 Centos7 超详细过程 分类  ...