浅谈隐语义模型和非负矩阵分解NMF
本文从基础介绍隐语义模型和NMF.
隐语义模型
”隐语义模型“常常在推荐系统和文本分类中遇到,最初来源于IR领域的LSA(Latent Semantic Analysis),举两个case加快理解。
向用户推荐物品
在推荐系统中,可以通过隐含语义模型将用户(user)和物品(item)自动分类,这些类别是自动生成的。这些类别也可以叫做“隐含的分类”,也许看不懂。每个用户或者物品会被分到多个类别中,属于某个类别的权重会被计算出来。
假设现在有一个大小为m×n的评分矩阵V,包含了m个用户对n个物品的评分,评分从0到5,值越大代表越喜欢,0代表没有打分。设定共有r个隐含的分类。通过一些方法,将V展开为两个相乘的矩阵:
V = W*H
其中,W的大小为m×r,H的大小为r×n。在隐语义模型中,W(i,j)被解释为用户i属于类别j的权重,H(a,b)被解释为物品b属于类别a的的权重。
如果用户u对物品i没有评分,可以将这个评分r(u,i)预测为:
r(u,i) = sum(W(i, :) .* H(:, i))
据此可以构建一个推荐系统。
网易云音乐的推荐算法,应该如此。
文本分类
类似上面的推荐系统。词袋模型与文档-词矩阵中介绍过文档-词矩阵。将数据集中的一堆文本构造成文档-词矩阵V,如果共有m个文本,n个单词,那么V的大小为m×n。V(i,j)表示文档i中出现单词j的次数。
设定共有r个隐含的分类。通过一些方法,将V展开为两个相乘的矩阵:
V = W*H
其中,W的大小为m×r,H的大小为r×n。在隐语义模型中,W(i,j)被解释为文档i属于类别j的权重,H(a,b)被解释为单词b属于类别a的的权重。
对于一个文档,其权重最大的类别被看作是该文档的类别。由于设定共有r个隐含的分类,分类结果也是r个份分类。
NMF
NMF,全称为non-negative matrix factorization,翻译为“非负矩阵分解”,可以用于隐语义模型。非负矩阵,就是矩阵中的每个元素都是非负的。将非负矩阵V分解为两个非负矩阵W和H的乘,叫做非负矩阵分解。那么,该怎么分解呢?在下面的这篇论文里,给出了两个方法并给出了具体证明。
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
浅谈隐语义模型和非负矩阵分解NMF的更多相关文章
- 文本主题模型之非负矩阵分解(NMF)
在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题.这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解 ...
- RS:关于协同过滤,矩阵分解,LFM隐语义模型三者的区别
项亮老师在其所著的<推荐系统实战>中写道: 第2章 利用用户行为数据 2.2.2 用户活跃度和物品流行度的关系 [仅仅基于用户行为数据设计的推荐算法一般称为协同过滤算法.学术界对协同过滤算 ...
- 推荐系统--隐语义模型LFM
主要介绍 隐语义模型 LFM(latent factor model). 隐语义模型最早在文本挖掘领域被提出,用于找到文本的隐含语义,相关名词有 LSI.pLSA.LDA 等.在推荐领域,隐语义模型也 ...
- 【转载】使用LFM(Latent factor model)隐语义模型进行Top-N推荐
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...
- LFM 隐语义模型
隐语义模型: 物品 表示为长度为k的向量q(每个分量都表示 物品具有某个特征的程度) 用户兴趣 表示为长度为k的向量p(每个分量都表示 用户对某个特征的喜好程度) 用户u对物品i的兴趣 ...
- 使用LFM(Latent factor model)隐语义模型进行Top-N推荐
最近在拜读项亮博士的<推荐系统实践>,系统的学习一下推荐系统的相关知识.今天学习了其中的隐语义模型在Top-N推荐中的应用,在此做一个总结. 隐语义模型LFM和LSI,LDA,Topic ...
- 海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis
http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 推荐系统之隐语义模型(LFM)
LFM(latent factor model)隐语义模型,这也是在推荐系统中应用相当普遍的一种模型.那这种模型跟ItemCF或UserCF的不同在于: 对于UserCF,我们可以先计算和目标用户兴趣 ...
- 推荐系统第5周--- 基于内容的推荐,隐语义模型LFM
基于内容的推荐
随机推荐
- 源码(07) -- java.util.Iterator<E>
java.util.Iterator<E> 源码分析(JDK1.7) ----------------------------------------------------------- ...
- express框架介绍
//引入express模块 var express = require('express'); //调用express方法,接受其返回值(返回值为对象) var app = express(); ap ...
- gradient的几点认识转载
线性渐变(Linear Gradients)- 向下/向上/向左/向右/对角方向 径向渐变(Radial Gradients)- 由它们的中心定义 在这里主要讲线性渐变谷歌浏览器中:(1)backgr ...
- 读书笔记 effective c++ Item 1 将c++视为一个语言联邦
Item 1 将c++视为一个语言联邦 如今的c++已经是一个多重泛型变成语言.支持过程化,面向对象,函数式,泛型和元编程的组合.这种强大使得c++无可匹敌,却也带来了一些问题.所有“合适的”规则看上 ...
- 利用matlab进行协方差运算
本文全部参考自: http://www.cnblogs.com/welen/articles/5535042.html#undefined 知识点一: MATLAB中四个取整函数具体使用方法如下:Ma ...
- PCB信号集
每一个进程都有一个pcb进程控制块,用来控制进程的信息,同时信号在pcb中有两个队列去维护他,一个是未决信号集,每一位对应一个信号的状态,0,1,1表示未决态,另一个是信号屏蔽字(阻塞信号集),也就0 ...
- Vim进阶命令
1. 查找 /xxx(?xxx) 表示在整篇文档中搜索匹配xxx的字符串, / 表示向下查找, ? 表示 向上查找.其中xxx可以是正规表达式, ...
- nodemailer中的几个坑
nodemailer是什么 nodemailer是一个nodejs的邮件服务模块 如何用nodemailer发邮件 1.先安装nodemailer npm i --save nodemailer 2. ...
- 【2017年新篇章】 .NET 面试题汇总(二)
本次给大家介绍的是我收集以及自己个人保存一些.NET面试题第二篇 第一篇文章请到这里:[2017年新篇章] .NET 面试题汇总(一) 简介 此次包含的不止是.NET知识,也包含少许前端知识以及.ne ...
- MobileOA第一期总结
MobileOA第一期总结 前段时间一直没有更新博客,好想给自己找个借口---恩,我还是多找几个吧.毕业论文.毕业照,再感伤一下,出去玩一下,不知不觉就过去几个月了.然后上个月底才重新回到学习之路,从 ...