(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资)

在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。

其具有以下特征:

(1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值。而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。

(2) SVM通过最大化决策边界的边缘来实现控制模型的能力。尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等。

  (3)SVM一般只能用在二类问题,对于多类问题效果不好。
   
  1. 下面是代码及详细解释(基于sklearn包):

from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt #准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1] ##开始训练
clf=svm.SVC() ##默认参数:kernel='rbf'
clf.fit(x,y) #print("预测...")
#res=clf.predict([[2,2]]) ##两个方括号表面传入的参数是矩阵而不是list ##根据训练出的模型绘制样本点
for i in x:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
plt.scatter(i[0],i[1],c='r',marker='*')
else :
plt.scatter(i[0],i[1],c='g',marker='*') ##生成随机实验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2))
##回执实验数据点
for i in rdm_arr:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
plt.scatter(i[0],i[1],c='r',marker='.')
else :
plt.scatter(i[0],i[1],c='g',marker='.')
##显示绘图结果
plt.show()

结果如下图:

从图上可以看出,数据明显被蓝色分割线分成了两类。但是红色箭头标示的点例外,所以这也起到了检测异常值的作用。

2.在上面的代码中提到了kernel='rbf',这个参数是SVM的核心:核函数

重新整理后的代码如下:

from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt ##设置子图数量
fig, axes = plt.subplots(nrows=2, ncols=2,figsize=(7,7))
ax0, ax1, ax2, ax3 = axes.flatten() #准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1]
'''
说明1:
核函数(这里简单介绍了sklearn中svm的四个核函数,还有precomputed及自定义的) LinearSVC:主要用于线性可分的情形。参数少,速度快,对于一般数据,分类效果已经很理想
RBF:主要用于线性不可分的情形。参数多,分类结果非常依赖于参数
polynomial:多项式函数,degree 表示多项式的程度-----支持非线性分类
Sigmoid:在生物学中常见的S型的函数,也称为S型生长曲线 说明2:根据设置的参数不同,得出的分类结果及显示结果也会不同 '''
##设置子图的标题
titles = ['LinearSVC (linear kernel)',
'SVC with polynomial (degree 3) kernel',
'SVC with RBF kernel', ##这个是默认的
'SVC with Sigmoid kernel']
##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2)) def drawPoint(ax,clf,tn):
##绘制样本点
for i in x:
ax.set_title(titles[tn])
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='*')
else :
ax.scatter(i[0],i[1],c='g',marker='*')
##绘制实验点
for i in rdm_arr:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='.')
else :
ax.scatter(i[0],i[1],c='g',marker='.') if __name__=="__main__":
##选择核函数
for n in range(0,4):
if n==0:
clf = svm.SVC(kernel='linear').fit(x, y)
drawPoint(ax0,clf,0)
elif n==1:
clf = svm.SVC(kernel='poly', degree=3).fit(x, y)
drawPoint(ax1,clf,1)
elif n==2:
clf= svm.SVC(kernel='rbf').fit(x, y)
drawPoint(ax2,clf,2)
else :
clf= svm.SVC(kernel='sigmoid').fit(x, y)
drawPoint(ax3,clf,3)
plt.show()

结果如图:

由于样本数据的关系,四个核函数得出的结果一致。在实际操作中,应该选择效果最好的核函数分析。

3.在svm模块中还有一个较为简单的线性分类函数:LinearSVC(),其不支持kernel参数,因为设计思想就是线性分类。如果确定数据

可以进行线性划分,可以选择此函数。跟kernel='linear'用法对比如下:

from sklearn import svm
import numpy as np
import matplotlib.pyplot as plt ##设置子图数量
fig, axes = plt.subplots(nrows=1, ncols=2,figsize=(7,7))
ax0, ax1 = axes.flatten() #准备训练样本
x=[[1,8],[3,20],[1,15],[3,35],[5,35],[4,40],[7,80],[6,49]]
y=[1,1,-1,-1,1,-1,-1,1] ##设置子图的标题
titles = ['SVC (linear kernel)',
'LinearSVC'] ##生成随机试验数据(15行2列)
rdm_arr=np.random.randint(1, 15, size=(15,2)) ##画图函数
def drawPoint(ax,clf,tn):
##绘制样本点
for i in x:
ax.set_title(titles[tn])
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='*')
else :
ax.scatter(i[0],i[1],c='g',marker='*')
##绘制实验点
for i in rdm_arr:
res=clf.predict(np.array(i).reshape(1, -1))
if res > 0:
ax.scatter(i[0],i[1],c='r',marker='.')
else :
ax.scatter(i[0],i[1],c='g',marker='.') if __name__=="__main__":
##选择核函数
for n in range(0,2):
if n==0:
clf = svm.SVC(kernel='linear').fit(x, y)
drawPoint(ax0,clf,0)
else :
clf= svm.LinearSVC().fit(x, y)
drawPoint(ax1,clf,1)
plt.show()

结果如图所示:

机器学习:Python中如何使用支持向量机(SVM)算法的更多相关文章

  1. 一步步教你轻松学支持向量机SVM算法之案例篇2

    一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...

  2. 一步步教你轻松学支持向量机SVM算法之理论篇1

    一步步教你轻松学支持向量机SVM算法之理论篇1 (白宁超 2018年10月22日10:03:35) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...

  3. 4、2支持向量机SVM算法实践

    支持向量机SVM算法实践 利用Python构建一个完整的SVM分类器,包含SVM分类器的训练和利用SVM分类器对未知数据的分类, 一.训练SVM模型 首先构建SVM模型相关的类 class SVM: ...

  4. Spark机器学习系列之13: 支持向量机SVM

    Spark 优缺点分析 以下翻译自Scikit. The advantages of support vector machines are: (1)Effective in high dimensi ...

  5. spark机器学习从0到1支持向量机SVM(五)

        分类 分类旨在将项目分为不同类别. 最常见的分类类型是二元分类,其中有两类,通常分别为正数和负数. 如果有两个以上的类别,则称为多类分类. spark.mllib支持两种线性分类方法:线性支持 ...

  6. 吴恩达机器学习笔记(六) —— 支持向量机SVM

    主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...

  7. 机器学习(四):通俗理解支持向量机SVM及代码实践

    上一篇文章我们介绍了使用逻辑回归来处理分类问题,本文我们讲一个更强大的分类模型.本文依旧侧重代码实践,你会发现我们解决问题的手段越来越丰富,问题处理起来越来越简单. 支持向量机(Support Vec ...

  8. python中的MRO和C3算法

    一. 经典类和新式类 1.python多继承 在继承关系中,python子类自动用友父类中除了私有属性外的其他所有内容.python支持多继承.一个类可以拥有多个父类 2.python2和python ...

  9. 机器学习-Python中训练模型的保存和再使用

    模型保存 BP:model.save(save_dir) SVM: from sklearn.externals import joblib joblib.dump(clf, save_dir) 模型 ...

随机推荐

  1. Codeforces 768B Code For 1

    B. Code For 1 time limit per test:2 seconds memory limit per test:256 megabytes input:standard input ...

  2. PHP基础学习(函数一)

    PHP(Hypertext Preprocessor):超文本预处理器,一种嵌入在HTML中并且运行在服务器端的脚本语言. var_dump--打印变量相关信息 说明:  <?php var_d ...

  3. 【Zookeeper】源码分析之请求处理链(四)

    一.前言 前面分析了SyncReqeustProcessor,接着分析请求处理链中最后的一个处理器FinalRequestProcessor. 二.FinalRequestProcessor源码分析 ...

  4. canvas绘图不清晰的解决方案

    现象描述 同样大小的图片(60x60px)用canvas和DOM绘制,结果发现canvas的画面质量要差很多.结果如下图所示. 上图中,左侧红框中的金币采用DOM绘制,右侧和下方的金币和文字等使用ca ...

  5. html 5 video

    正项目中, 20秒 2mb左右在速度上可以接受, 但是最总怎样剪都不可以被游览器读取, 因为H.264 和一些我不清楚的. 为了简单解决这小问题, 请使用 http://easyhtml5video. ...

  6. nginx配置参数详解

    配置参数详解 user nginx nginx ; Nginx用户及组:用户 组.window下不指定 worker_processes 8; 工作进程:数目.根据硬件调整,通常等于CPU数量或者2倍 ...

  7. smarty模板基础1

    smarty模板的作用可以让前端和后端分离(也就是前端的显示页面和后端的php代码). smarty模板的核心是一个类,下载好的模板中有这么几个重要的文件夹 (1)libs核心文件夹(2)int.in ...

  8. Spark_总结四

    Spark_总结四 1.Spark SQL     Spark SQL 和 Hive on Spark 两者的区别?         spark on hive:hive只是作为元数据存储的角色,解析 ...

  9. mfc--弹出文件夹对话框

    1. HRESULT CoInitializeEx(void* pvReserved,DWORD dwCoInit) 初始化com组件,传递参数COINIT_APARTMENTTHREADED 2.L ...

  10. C#调用PB写的com组件dll

    背景 小编为了使用C#去模仿PB代码的加密算法,结果发现PB算法中,的long类型只有21亿,实际上传入的数值达到了78亿,造成了数据溢出,精度丢失的情况. 然而PB的算法已经使用C#不可以还原(C# ...