poj3249 拓扑排序+DP
题意:给出一个有向无环图,每个顶点都有一个权值。求一条从入度为0的顶点到出度为0的顶点的一条路径,路径上所有顶点权值和最大。
思路:因为是无环图,则对于每个点经过的路径求其最大权值有,dp[i]=max(dp[j]) j为i的子节点集合。再根据其要求入度为零为顶点,可以用拓扑排序每次枚举入度为零的点删去找下一个入度为零的点进行dp。
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define MAXN 100005
#define MAXM 1000005
#define inf 100000000 int n,m,tot,ans;
int indegree[MAXN],outdegree[MAXN],vis[MAXN],dp[MAXN],head[MAXN],cost[MAXN]; struct Edge
{
int from,to,next;
}edge[MAXM];
void addedge(int v,int w)
{
edge[tot].from=v;
edge[tot].to=w;
edge[tot].next=head[v];
head[v]=tot++;
}
void Topo_dp()
{
int c=1;
while(c<n)
{
for(int i=1;i<=n;i++)
{
if(!indegree[i]&&!vis[i])
{
vis[i]=true;
c++;
for(int j=head[i];j!=-1;j=edge[j].next)
{
int v=edge[j].to;
indegree[v]--;
if(dp[i]+cost[v]>dp[v])
{
dp[v]=dp[i]+cost[v];
}
}
}
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&cost[i]);
}
for(int i=1;i<=n;i++)
{
indegree[i]=0;
outdegree[i]=0;
vis[i]=false;
}
tot=1;
memset(head,-1,sizeof(head));
for(int i=1;i<=m;i++)
{
int v,w;
scanf("%d%d",&v,&w);
addedge(v,w);
indegree[w]++;
outdegree[v]++;
}
ans=-inf;
for(int i=1;i<=n;i++)
{
if(!indegree[i])
{
dp[i]=cost[i];
}
else
{
dp[i]=-inf;
}
} Topo_dp();
for(int i=1;i<=n;i++)
{
if(!outdegree[i]&&dp[i]>ans)
ans=dp[i];
}
printf("%d\n",ans);
}
return 0;
}
poj3249 拓扑排序+DP的更多相关文章
- POJ 3249 拓扑排序+DP
貌似是道水题.TLE了几次.把所有的输入输出改成scanf 和 printf ,有吧队列改成了数组模拟.然后就AC 了.2333333.... Description: MR.DOG 在找工作的过程中 ...
- [NOIP2017]逛公园 最短路+拓扑排序+dp
题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...
- 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp
正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...
- 【BZOJ-1194】潘多拉的盒子 拓扑排序 + DP
1194: [HNOI2006]潘多拉的盒子 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 456 Solved: 215[Submit][Stat ...
- 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP
[BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...
- bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp
题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...
- 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp
题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...
- 【bzoj4562】[Haoi2016]食物链 拓扑排序+dp
原文地址:http://www.cnblogs.com/GXZlegend/p/6832118.html 题目描述 如图所示为某生态系统的食物网示意图,据图回答第1小题 现在给你n个物种和m条能量流动 ...
随机推荐
- Js 获取时间戳
//获取时间戳 单位:秒: //1. 获取当前时间戳 function getUnixTime(){ var date = new Date(); //使用getTime方法: var unix_ti ...
- 深度学习:Keras入门(二)之卷积神经网络(CNN)
说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式 ...
- 使用我的编译器,下面的代码 int i=7; printf("%d\n", i++ * i++); 返回 49?不管按什么顺序计算, 难道不该打印出56吗?
尽管后缀自加和后缀自减操作符 ++ 和 -- 在输出其旧值之后才会执行运算, 但这里的"之后"常常被误解.没有任何保证确保自增或自减会在输出变量原值之 后和对表达式的其它部分进行计 ...
- CSS中2d转换:transition过渡放在:hover伪类中与应用在整个元素中区别
css的2d转换十分强大,能够在不使用js的情况下,实现页面的元素与用户之间更多动态的交互,增强用户体验.其中使用最多的就是hover伪类. 1.创建一个页面的div元素: <!DOCTYPE ...
- Android -- 自定义view实现keep欢迎页倒计时效果
1,最近打开keep的app的时候,发现它的欢迎页面的倒计时效果还不错,所以打算自己来写写,然后就有了这篇文章. 2,还是老规矩,先看一下我们今天实现的效果 相较于我们常见的倒计时,这次实现的效果是多 ...
- python join 和 split的常用使用方法
函数:string.join()Python中有join()和os.path.join()两个函数,具体作用如下: join(): 连接字符串数组.将字符串.元组.列表中的元素以指定的字符 ...
- js对敏感词的判断
先贴代码: //定义敏感字符 var forbiddenArray =['xx','<','>','黄色']; //定义函数 function forbiddenStr(str){ // ...
- 第一阶段项目(2 body)
body属性 <div class="H1"> <div class="top-nav"> <div class="tn ...
- PCA主成分分析
特征降维就是降低特征矩阵维数,减少噪声和冗余,减少过度拟合. Principal factor analysis简称PCA,其思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征.这k ...
- 来杯咖啡看Pecan
Pecan的介绍及安装 文章内容来自官方文档:http://pecan.readthedocs.io/en/latest/quick_start.html Pecan的介绍: Pecan是一个路由对 ...