[51nod1709]复杂度分析
给出一棵n个点的树(以1号点为根),定义dep[i]为点i到根路径上点的个数。众所周知,树上最近公共祖先问题可以用倍增算法解决。现在我们需要算出这个算法精确的复杂度。我们定义计算点i和点j最近公共组先的精确复杂度为bit[dep[i]-dep[lca(i,j)]]+bit[dep[j]-dep[lca(i,j)]](bit[i]表示i在二进制表示下有多少个1,lca(i,j)表示点i和点j的最近公共祖先)。为了计算平均所需的复杂度为多少,请你帮忙计算任意两点计算最近公共组先所需复杂度的总和。
即计算 sum{ bit[dep[i]-dep[lca(i,j)]]+bit[dep[j]-dep[lca(i,j)]] } ,1<=i<n,i+1<=j<=n;
Input
第一行一个数n表示点数(1<=n<=100,000)
接下来n-1行每行两个数x,y表示一条边(1<=x,y<=n)
Output
一个数表示答案
抱sxt大腿系列。。大概思路就是统计每个点往上跳每一步对答案的贡献。。先倍增预处理出每个点的那些父亲还有到父亲的那条边。
大概就是统计一下能从子树里跳到当前点的节点数,那些点就能当前父亲其他儿子里能跳到父亲的节点一起贡献。。。
当然不能每次直接跑。。就把查询都存到到父亲的边里面,最后再dfs一遍统计。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#include<cstdlib>
#include<bitset>
//#include<ctime>
#define ll long long
#define ull unsigned long long
#define ui unsigned int
#define d double
//#define ld long double
using namespace std;
const int maxn=,mxnode=maxn<<;
struct zs{int too,pre;}e[maxn<<];int tot,last[maxn];
int fa[maxn][],fae[maxn][],num[maxn],pos[maxn],TIM,sz[maxn];
ll sum[maxn],sume[maxn<<];
int i,j,k,n,m;
ll ans; int ra,fh;char rx;
inline int read(){
rx=getchar(),ra=,fh=;
while((rx<''||rx>'')&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>=''&&rx<='')ra=ra*+rx-,rx=getchar();return ra*fh;
} inline void dfs(int x){
register int i,to;pos[++TIM]=x,sz[x]=num[x]=;
for(i=;i<;i++)fa[x][i]=fa[fa[x][i-]][i-],fae[x][i]=fae[fa[x][i-]][i-];
for(i=last[x];i;i=e[i].pre)if((to=e[i].too)!=fa[x][])
fa[to][]=x,fae[to][]=i,dfs(to),sz[x]+=sz[to];
}
inline void DFS(int x){
register int i,to;
for(i=last[x];i;i=e[i].pre)if((to=e[i].too)!=fa[x][])
ans+=1ll*sume[i]*(sz[x]-sz[to]),DFS(to);
}
inline void insert(int a,int b){
e[++tot].too=b,e[tot].pre=last[a],last[a]=tot,
e[++tot].too=a,e[tot].pre=last[b],last[b]=tot;
}
int main(){
n=read();register int i,j;
for(i=;i<n;i++)insert(read(),read());
dfs();
int f;
for(j=;j<;j++)for(i=;i<=n;i++)if((f=fa[k=pos[i]][j]))
num[f]+=num[k],sum[f]+=num[k]+sum[k],sume[fae[k][j]]+=num[k]+sum[k];
DFS(),printf("%lld\n",ans);
}
[51nod1709]复杂度分析的更多相关文章
- 【树论 倍增】51nod1709 复杂度分析
倍增与位运算有很多共性:这题做法有一点像「线段树上二分」和「线段树套二分」的关系. 给出一棵n个点的树(以1号点为根),定义dep[i]为点i到根路径上点的个数.众所周知,树上最近公共祖先问题可以用倍 ...
- 51nod1709复杂度分析
题解: 注意到,如果第j位有贡献,那么从i往上跳2^j,然后不能再跳超过2^j. 因此可以考虑倍增. 代码: #include<bits/stdc++.h> typedef long lo ...
- 相似度分析,循环读入文件(加入了HanLP,算法第四版的库)
相似度分析的,其中的分词可以采用HanLP即可: http://www.open-open.com/lib/view/open1421978002609.htm /****************** ...
- 文本离散表示(三):TF-IDF结合n-gram进行关键词提取和文本相似度分析
这是文本离散表示的第二篇实战文章,要做的是运用TF-IDF算法结合n-gram,求几篇文档的TF-IDF矩阵,然后提取出各篇文档的关键词,并计算各篇文档之间的余弦距离,分析其相似度. TF-IDF与n ...
- 八大排序算法详解(动图演示 思路分析 实例代码java 复杂度分析 适用场景)
一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需 ...
- 八大排序算法——堆排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 先来了解下堆的相关概念:堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆:或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆.如 ...
- 八大排序算法——希尔(shell)排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 简单插 ...
- 八大排序算法——基数排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演 二.思路分析 基数排序第i趟将待排数组里的每个数的i位数放到tempj(j=1-10)队列中,然后再从这十个队列中取出数据,重新放到原数组里,直到i大于待排数的最大位数. 1.数组里的数最 ...
- 八大排序算法——归并排序(动图演示 思路分析 实例代码java 复杂度分析)
一.动图演示 二.思路分析 归并排序就是递归得将原始数组递归对半分隔,直到不能再分(只剩下一个元素)后,开始从最小的数组向上归并排序 1. 向上归并排序的时候,需要一个暂存数组用来排序, 2. 将 ...
随机推荐
- 【批处理】shift用法举例
@echo off set sum=0 call :sub sum 1 2 3 4 echo sum=%sum% pause :sub set /a %1=%1+%2 shift /2 if not ...
- mvn命令笔记
#发布到本地仓库 mvn deploy -DaltDeploymentRepository=snapshots::default::http://mvnrepo.xxx.com/mvn/snapsho ...
- AntData.ORM框架 之 DotnetCore
开源地址:https://github.com/yuzd/AntData.ORM CodeGen使用请参考http://www.cnblogs.com/yudongdong/p/6421312.h ...
- php示例的错误记录
最近几天在测试php的mvc,从网上找到几个示例. 先学习这一篇,http://www.cnblogs.com/q1ng/p/4529496.html 标题是 PHP的MVC框架 深入解析,其实是最 ...
- java 快速排序
快速排序比插入排序快了两个数量级 package test.sort; public class Paixu { public static void main(String[] args) { // ...
- Python 项目实践三(Web应用程序)第三篇
接着上节的继续学习,现在要显示所有主题的页面 有了高效的网页创建方法,就能专注于另外两个网页了:显示全部主题的网页以及显示特定主题中条目的网页.所有主题页面显示用户创建的所有主题,它是第一个需要使用数 ...
- MySQL:表的操作 知识点难点总结:表完整性约束及其他常用知识点二次总结🙄
表操作 一 : 修改表表表表表表表表表: ALTER TABLE 语法 1. 改表名rename alter table 表名 rename 新表名 2. 增加字段add alter table 表名 ...
- Django学习日记07_Admin
django.contrib django.contrib是django中附带的一个工具集,由很多的附加组件组成.这些附加组件包括管理工具(django.contrib.admin).用户鉴别系统(d ...
- SQLSERVER 远程登录18456错误
此文为转载: 我是这么解决的: 1.以windows验证模式进入数据库管理器. 第二步:右击sa,选择属性: 在常规选项卡中,重新填写密码和确认密码(改成个好记的).把强制实施密码策略去掉. 第三 ...
- K:二叉树的非递归遍历
相关介绍: 二叉树的三种遍历方式(先序遍历,中序遍历,后序遍历)的非递归实现,虽然递归方式的实现较为简单且易于理解,但是由于递归方式的实现受其递归调用栈的深度的限制,当递归调用的深度超过限制的时候, ...