1078: [SCOI2008]斜堆

Description

  斜堆(skew heap)是一种常用的数据结构。它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值
都比它父亲大。因此在整棵斜堆中,根的值最小。但斜堆不必是平衡的,每个结点的左右儿子的大小关系也没有任
何规定。在本题中,斜堆中各个元素的值均不相同。 在斜堆H中插入新元素X的过程是递归进行的:当H为空或者X
小于H的根结点时X变为新的树根,而原来的树根(如果有的话)变为X的左儿子。当X大于H的根结点时,H根结点的
两棵子树交换,而X(递归)插入到交换后的左子树中。 给出一棵斜堆,包含值为0~n的结点各一次。求一个结点
序列,使得该斜堆可以通过在空树中依次插入这些结点得到。如果答案不惟一,输出字典序最小的解。输入保证有
解。

Input

  第一行包含一个整数n。第二行包含n个整数d1, d2, ... , dn, di < 100表示i是di的左儿子,di>=100表示i
是di-100的右儿子。显然0总是根,所以输入中不含d0。

Output

  仅一行,包含n+1整数,即字典序最小的插入序列。

Sample Input

6
100 0 101 102 1 2

Sample Output

0 1 2 3 4 5 6

HINT

Source

【分析】

  这题要懂斜堆才能做。。

考虑斜堆中最后插入的那个结点,容易发现:
(1)它一定是一个极左结点(就是从根往它的路上一直都是沿着左链走),因为插入的时候每次都是插入到左子树中;
(2)它一定木有右子树,因为插入的时候每次都是把原来的某棵子树作为新结点的左子树;

满足(1)(2)的结点可能有多个,但紧接着可以发现,这个斜堆中的每个结点如果木有左子结点,那么也木有右子结点(或者说,每个非叶结点都有左子树),而在插入一个结点之前,其所有的祖先都被交换了左右子树,所以,若新结点的祖先中有满足(1)(2)的,且新结点不是叶结点,那么在新结点插入之前,这个满足(1)(2)的祖先必然是只有右子树而木有左子树的,这与上面的那个性质矛盾,所以,可以得出:最后插入的那个结点一定是满足(1)(2)的结点中,深度最小的那个(设为X),除非X的左子结点是叶结点,此时为了满足字典序最小,应该取X的左子结点为最后插入的。找到这个最后插入的结点以后,只需要把它删掉,并把它的所有祖先交换左右子树,就是插入该结点以前的状态了。这样可以找到字典序最小的插入顺序。

ORZ大神:http://www.cppblog.com/MatoNo1/archive/2013/03/03/192131.html

证明:斜堆中的每个结点如果木有左子结点,那么也木有右子结点:因为右儿子是由左儿子旋转得到的,而在旋转的同时左边一定被插入节点了。

  说得很清楚明白了,数据很小,直接暴力。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 110 int a[Maxn]; struct node
{
int x,lc,rc,f;
}t[*Maxn]; int op[Maxn],rt; int ffind()
{
int x=rt,nw;
while(t[x].rc) x=t[x].lc;
if(t[x].lc!=&&t[t[x].lc].lc==&&t[x].lc>x) nw=t[x].lc;
else nw=x; if(nw==rt) rt=t[nw].lc,t[nw].f=;
else
{
t[t[nw].f].lc=t[nw].lc;
t[t[nw].lc].f=t[nw].f;
x=t[nw].f;
while()
{
swap(t[x].lc,t[x].rc);
if(x==rt) break;
x=t[x].f;
}
}
return nw;
} int main()
{
int n;
scanf("%d",&n);
op[]=;
for(int i=;i<n;i++) t[i].lc=t[i].rc=;
t[].f=;
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
if(x>=) t[x-].rc=i,t[i].f=x-;
else t[x].lc=i,t[i].f=x;
}
rt=;
for(int i=;i<=n;i++)
{
op[i]=ffind();
}
for(int i=n;i>=;i--) printf("%d ",op[i]);
return ;
}

2017-01-17 15:00:26

【BZOJ 1078】 1078: [SCOI2008]斜堆的更多相关文章

  1. BZOJ 1078: [SCOI2008]斜堆

    1078: [SCOI2008]斜堆 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 770  Solved: 422[Submit][Status][ ...

  2. 【bzoj1078】[SCOI2008]斜堆

    2016-05-31 16:34:09 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1078 挖掘斜堆的性质233 http://www.cp ...

  3. 【BZOJ1078】[SCOI2008]斜堆(性质题)

    [BZOJ1078][SCOI2008]斜堆(性质题) 题面 BZOJ 洛谷 题解 考虑一下这道题目的性质吧.思考一下最后插入进来的数是什么样子的.首先因为它是最后插入进来的,所以一定是比某个数小,然 ...

  4. bzoj 1078 [SCOI2008]斜堆 —— 斜堆

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1078 考察斜堆的性质: 一个点如果没有左子树,也一定没有右子树: 看了这篇精美的博客:htt ...

  5. 【bzoj1078】 SCOI2008—斜堆

    http://www.lydsy.com/JudgeOnline/problem.php?id=1078 (题目链接) 题意 给出一个斜堆,并给出其插入的操作,求一个字典序最小的插入顺序. Solut ...

  6. BZOJ 2809: [Apio2012]dispatching [斜堆]

    题意:主席树做法见上一题 我曾发过誓再也不写左偏树(期末考试前一天下午5个小时没写出棘手的操作) 于是我来写斜堆啦 从叶子往根合并,维护斜堆就行了 题目连拓扑序都给你了... 说一下斜堆的操作: 合并 ...

  7. [SCOI2008]斜堆

    题目大意 1.题目描述 斜堆(skew heap)是一种常用的数据结构. 它也是二叉树,且满足与二叉堆相同的堆性质: 每个非根结点的值都比它父亲大.因此在整棵斜堆中,根的值最小. . 但斜堆不必是平衡 ...

  8. BZOJ1078 [SCOI2008]斜堆 堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1078 题意概括 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的 ...

  9. P2475 [SCOI2008]斜堆(递归模拟)

    思路 可并堆真是一种神奇的东西 不得不说这道题是道好题,虽然并不需要可并堆,但是能加深对可并堆的理解 首先考虑斜堆的性质,斜堆和左偏树相似,有如下的性质 一个节点如果有右子树,就一定有左子树 最后插入 ...

随机推荐

  1. spring 那点事

    Spring核心功能 DI(IOC) 何谓DI(IOC) DI(依赖注入)是spring的核心功能之一. Dependency Injection 和 Inversion of Control 其实就 ...

  2. 函数getopt()及其参数optind -- (转)

    getopt被用来解析命令行选项参数 #include <unistd.h>       extern char *optarg;  //选项的参数指针       extern int ...

  3. splay:优雅的区间暴力!

    万年不更的blog主更新啦!主要是最近实在忙,好不容易才从划水做题的时间中抽出一段时间来写这篇blog 首先声明:这篇blog写的肯定会很基础...因为身为一个蒟蒻深知在茫茫大海中找到一个自己完全能够 ...

  4. Ubuntu 14.04开启ssh服务

    sudo apt-get install openssh-server sudo apt-get install openssh-client sudo service ssh restart

  5. sicily 1063. Who's the Boss

    Time Limit: 1sec    Memory Limit:32MB  Description Several surveys indicate that the taller you are, ...

  6. C#调用Excel报 error CS1969: 找不到编译动态表达式所需的一个或多个类型。是否缺少引用?

    转自[http://blog.csdn.net/bodybo/article/details/43191319] 程序需要读取Exel文件,有如下代码段 object oMissing = Syste ...

  7. Python构造函数使用

    1. 子类不定义构造函数时候,默认引用父类构造函数 class A(object): def __init__(self,name): self.name = name def run(self): ...

  8. MySQL-5.5.49安装、多实例、主从复制

    源码安装mysql yum install ncurses-devel libaio-devel -y mkdir /server/tools -p cd /server/tools wget htt ...

  9. Linux网络编程:一个简单的正向代理服务器的实现

    Linux是一个可靠性非常高的操作系统,但是所有用过Linux的朋友都会感觉到, Linux和Windows这样的"傻瓜"操作系统(这里丝毫没有贬低Windows的意思,相反这应该 ...

  10. node采用的commonJs规范

    AMD与commonJS规范不同 同步加载 主要就是一个输出,一个引入,我也建了两个文件,一个输出文件一个引入文件 export.js ; ; ; function incCounter(){ cou ...