BZOJ2668 [cqoi2012]交换棋子 【费用流】
题目链接
题解
容易想到由\(S\)向初始的黑点连边,由终态的黑点向\(T\)连边,然后相邻的点间连边
但是这样满足不了交换次数的限制,也无法计算答案
考虑如何满足一个点的交换次数限制
当然是拆点
但是一个位置被经过时会被交换两次,而终点和起点都只交换了一次
那么我们就拆成三个点\(left\),\(mid\),\(right\),分别管理入,中介,出
它们之间顺次两边,费用为\(1\)
流量将限制\(lim\)拆开,当\(lim\)为奇数时要考虑给哪一边:
如果该点一开始是黑点,终态是白点,那么这个点出边一定比入边多
如果一开始是白点,终态是黑点,那么一定要入边多一点
否则一样多
有一些要注意的地方:
①要判黑白起始是否相同
②相邻不止是四个方向
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 2005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
struct EDGE{int to,nxt,f,w;}ed[maxm];
inline void build(int u,int v,int f,int w){
ed[++ne] = (EDGE){v,h[u],f,w}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v],0,-w}; h[v] = ne;
}
int d[maxn],minf[maxn],vis[maxn],p[maxn],S,T;
int q[maxn * 10],head,tail;
int mincost(){
int flow = 0,cost = 0,u;
while (true){
for (int i = S; i <= T; i++) vis[i] = 0,d[i] = minf[i] = INF;
d[S] = 0; q[head = tail = 0] = S;
while (head <= tail){
u = q[head++];
vis[u] = false;
Redge(u) if (ed[k].f && d[u] + ed[k].w < d[to = ed[k].to]){
d[to] = d[u] + ed[k].w; p[to] = k; minf[to] = min(ed[k].f,minf[u]);
if (!vis[to]) q[++tail] = to,vis[to] = true;
}
}
if (d[T] == INF) break;
flow += minf[T]; cost += d[T] * minf[T];
u = T;
while (u != S){
ed[p[u]].f -= minf[T];
ed[p[u] ^ 1].f += minf[T];
u = ed[p[u] ^ 1].to;
}
}
return cost;
}
char ss[22][22],st[22][22],lim[22][22];
int n,m,id[22][22],X[8] = {0,0,-1,1,-1,-1,1,1},Y[8] = {-1,1,0,0,-1,1,-1,1},cnta,cntb;
int main(){
n = read(); m = read();
REP(i,n) REP(j,m) id[i][j] = (i - 1) * m + j;
REP(i,n) scanf("%s",ss[i] + 1);
REP(i,n) scanf("%s",st[i] + 1);
REP(i,n) scanf("%s",lim[i] + 1);
int E = n * m,x,nx,ny; S = 0; T = 3 * E + 1;
REP(i,n) REP(j,m){
x = lim[i][j] - '0';
if (ss[i][j] == '1' && st[i][j] == '0'){
cnta++;
build(S,id[i][j],1,0);
build(id[i][j] + E,id[i][j],x / 2,1);
build(id[i][j],id[i][j] + 2 * E,(x + 1) / 2,1);
}
else if (ss[i][j] == '0' && st[i][j] == '1'){
cntb++;
build(id[i][j],T,1,0);
build(id[i][j] + E,id[i][j],(x + 1) / 2,1);
build(id[i][j],id[i][j] + 2 * E,x / 2,1);
}
else {
build(id[i][j] + E,id[i][j],x / 2,1);
build(id[i][j],id[i][j] + 2 * E,x / 2,1);
}
for (int k = 0; k < 8; k++){
nx = i + X[k];
ny = j + Y[k];
if (nx < 1 || ny < 1 || nx > n || ny > m) continue;
build(id[i][j] + 2 * E,id[nx][ny] + E,INF,0);
}
}
if (cnta != cntb) puts("-1");
else{
int ans = mincost();
Redge(S) if (ed[k].f){puts("-1"); return 0;}
printf("%d\n",ans / 2);
}
return 0;
}
BZOJ2668 [cqoi2012]交换棋子 【费用流】的更多相关文章
- BZOJ2668: [cqoi2012]交换棋子(费用流)
Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行 ...
- 【BZOJ2668】[cqoi2012]交换棋子 费用流
[BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...
- [CQOI2012] 交换棋子 - 费用流
有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Solution 一个点拆三份,入点,主点 ...
- BZOJ.2668.[CQOI2012]交换棋子(费用流zkw)
题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点 ...
- BZOJ2668: [cqoi2012]交换棋子
题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇 ...
- BZOJ2668:[CQOI2012]交换棋子(费用流)
题目描述 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. 输入输出格式 输入格式: 第一行 ...
- [CQOI2012][bzoj2668] 交换棋子 [费用流]
题面 传送门 思路 抖机灵 一开始看到这题我以为是棋盘模型-_-|| 然而现实是骨感的 后来我尝试使用插头dp来交换,然后又惨死 最后我不得不把目光转向那个总能化腐朽为神奇的算法:网络流 思维 我们要 ...
- 【BZOJ-2668】交换棋子 最小费用最大流
2668: [cqoi2012]交换棋子 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1055 Solved: 388[Submit][Status ...
- [cqoi2012]交换棋子
2668: [cqoi2012]交换棋子 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1334 Solved: 518[Submit][Stat ...
随机推荐
- explain获得使用的key的数据
bool Explain_join::explain_key_and_len() { if (tab->ref.key_parts) return explain_key_and_len_ind ...
- Selenium 入门到精通系列:二
Selenium 入门到精通系列 PS:用户登录 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2019-04-23 16:12 ...
- HDU - 6444(单调队列+思维)
链接:HDU - 6444 题意:给出一个包含 n 个数的环,每个数都有一个价值,起点任选,每次跳顺时针跳 k 个数,在哪个数就能获得该价值(包括起点),最多取 m 次,问最少需要补充多少价值,所拿的 ...
- lintcode50 数组剔除元素后的乘积
数组剔除元素后的乘积 给定一个整数数组A. 定义B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], 计算B的时候请不要使用除法. 您在真实的面试中是 ...
- https的主体过程
https其实就是基于SSL的http.加密后的http信息按理是不会被篡改和查看的. https的过程总体上是按照下面来进行的: 1.客户端发起请求,服务端返回一个SSL证书,证书里面有一公钥A. ...
- sqlserver 2008 merger语句
Merge关键字是一个神奇的DML关键字.它在SQL Server 2008被引入,它能将Insert,Update,Delete简单的并为一句.MSDN对于Merge的解释非常的短小精悍:”根据与源 ...
- Memory及其controller芯片整体测试方案(下篇)
{ 第三部分 } DDR总线的设计.调试和验证 在计算机架构中,DDR作为程序运算的动态存储器,面对如高性能计算.图形计算.移动计算.工业应用等领域的要求,发展出DDR4,以及用于图形计算的G ...
- Train Problem(栈的应用)
Description As the new term comes, the Ignatius Train Station is very busy nowadays. A lot of studen ...
- iOS 出现错误reason: image not found的解决方案
在制作framework时遇到真机运行时导致的reason: image not found允许崩溃的问题,下面是我的解决方案: 首先我们分析一下出现这种情况的原因,原因就是framework找不到镜 ...
- mysql8基本配置,差点被各种坑蒙圈
1. 下载免安装版mysql地址 https://dev.mysql.com/downloads/mysql/ 2. 基本配置 (1)解压zip包,将bin目录添加到环境变量 (2)在mysql根目录 ...