洛谷 P1516 青蛙的约会 解题报告
P1516 青蛙的约会
题目描述
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
输入输出格式
输入格式:
输入只包括一行5个整数\(x\),\(y\),\(m\),\(n\),\(L\)
其中\(0<x≠y<=2000000000\),\(0 < m,n < =2000000000\),\(0 < L < =2100000000\)。
输出格式:
输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。
exgcd还是有不少小细节的,以前没做过题不知道
首先 我们需要解同余方程
\(nx+a \equiv mx+b \ (mod \ l)\)
移项 \((n-m)x \equiv b-a \ (mod \ l)\)
我们确保\((n-m)\)是正的,因为待会要用扩欧
等价于不定方程 \((n-m)x-ly=b-a\)
令 \(q=n-m,p=-l,d=b-a\)
即\(qx+py=d\)
根据裴蜀定理,有解的判定为 \(gcd(q,p)|d\)
剩下的就是扩展欧几里得的事情了
通解为 模 \(l/gcd(q,p)\) 意义下的
为什么呢?
假设我们已经得到特解\(x_0\)
则设有通解\(x=x_0+kt\),\(k\)为遍历的整数,我们要求出\(t\)
带回原式
\(py=-q(x_0+kt)+d\)
把\(p\)除过去,保证\(y\)为整数
因为\(p|d-qx_0\)(我们已经解出了这个方程)
所以我们只需要满足\(p|qkt\)即可
发现\(t\)需要补充\(p/gcd(q,p)\)以外的部分
而\(p=-l\)
所以通解为 模 \(l/gcd(q,p)\) 意义下的
Code:
#include <cstdio>
#define ll long long
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1,y=0;
return;
}
exgcd(b,a%b,x,y);
ll tmp=x;
x=y;
y=tmp-a/b*y;
}
void swap(ll &x,ll &y)
{
ll tmp=x;x=y;y=tmp;
}
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
int main()
{
ll a,b,n,m,l;
scanf("%lld%lld%lld%lld%lld",&a,&b,&n,&m,&l);
if(n<m) swap(n,m),swap(a,b);
ll d=((b-a)%l+l)%l;
a=n-m,b=l;
ll bas=gcd(a,b);
if(d%bas!=0) {printf("Impossible\n");return 0;}
d/=bas,a/=bas,b/=bas,l/=bas;
ll x,y;
exgcd(a,b,x,y);
printf("%lld\n",(x*d%l+l)%l);
return 0;
}
2018.8.8
洛谷 P1516 青蛙的约会 解题报告的更多相关文章
- 洛谷——P1516 青蛙的约会
P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...
- 洛谷 p1516 青蛙的约会 题解
dalao们真是太强了,吊打我无名蒟蒻 我连题解都看不懂,在此篇题解中,我尽量用语言描述,不用公式推导(dalao喜欢看公式的话绕道,这篇题解留给像我一样弱的) 进入正题 如果不会扩展欧里几德的话请先 ...
- 洛谷P1516 青蛙的约会(扩展欧几里德)
洛谷题目传送门 很容易想到,如果他们相遇,他们初始的位置坐标之差\(x-y\)和跳的距离\((n-m)t\)(设\(t\)为跳的次数)之差应该是模纬线长\(l\)同余的,即\((n-m)t\equiv ...
- 洛谷P1516 青蛙的约会
题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清 ...
- 洛谷 P1516 青蛙的约会
https://www.luogu.org/problemnew/show/P1516#sub 题意还是非常好理解的..... 假如这不是一道环形的跑道而是一条直线,你会怎样做呢? 如果是我就会列一个 ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
随机推荐
- nodejs学习笔记(2)
1.express超时设置 如果http请求在一段时间内没有返回值,express会重新向后台发送请求.在后台方法执行时间较长的情况下,重复的请求会重复执行,造成前台接收到空的response,出现E ...
- 如何在Mac OS系统下搭建Java开发环境 配置Java环境变量
1. 打开终端 在finder里面搜索(这台MAC)查找终端 2. 在cdlouiedeAir:~ cdlouie$(cdlouie是我的电脑用户名) 后面输入sudo vim /etc/pr ...
- zookeeper应用:屏障、队列、分布式锁
zookeeper工具类: 获取连接实例:创建节点:获取子节点:设置节点数据:获取节点数据:访问控制等. package org.windwant.zookeeper; import org.apac ...
- 爬虫1.6-selenium+HeadlessChrome
目录 爬虫-selenium+HeadlessChrome 1. 浏览器处理步骤 2. headless-chrome初体验 3. 实战爬取淘宝镇.街道信息 爬虫-selenium+HeadlessC ...
- 线性代数之——A 的 LU 分解
1. A = LU 之前在消元的过程中,我们看到可以将矩阵 \(A\) 变成一个上三角矩阵 \(U\),\(U\) 的对角线上就是主元.下面我们将这个过程反过来,通一个下三角矩阵 \(L\) 我们可以 ...
- POJ 3084 Panic Room(最大流最小割)
Description You are the lead programmer for the Securitron 9042, the latest and greatest in home sec ...
- hosts_allow配置了却不生效
hosts_allow配置了却不生效 配置了两台白名单的机器,一台生效一台不生效,google后的结果都是更新libwrap.so 安装openssh等等..(问题还是没有解决) 经过对比发现,原来 ...
- addeventlistener和attachevent
区别: 1.ie8及以下版本前者无效,只能使用后者: 2,关于第三个参数,如果是true则捕获状态触发,为false;则为冒泡状态触发 何为冒泡,何为捕获? 这就好比捕鱼,冒泡吗,鱼向上吐泡泡,所以当 ...
- python切片详解
先从原理上分析切片运算: list的切片,内部是调用__getitem__,__setitem__,__delitem__和slice函数.而slice函数又是和range()函数相关的. 给切片传递 ...
- 2019寒假训练营第三次作业part1-网络空间安全概论第五章
第五章 网络攻防技术 5.1 网路信息收集技术--网络踩点 黑客入侵系统之前,需要了解目标系统可能存在的: 管理上的安全缺陷和漏洞 网络协议安全缺陷与漏洞 系统安全缺陷与漏洞 黑客实施入侵过程中,需要 ...