BZOJ 1057 棋盘制作(最大01相间子矩阵)
求最大01相间子矩阵可以转换为求最大全0子矩阵。只需把棋盘(x+y)为奇数的取反,而该问题可以用经典的悬线法O(n^2)的求解。
悬线法呢。
首先定义b[i][j],为a[i][j]向上的最大连续0的长度。可以O(n^2)递推求出。
l[i][j],为b[i][j]向左边的最大连续序列的长度,该连续序列满足b[i][k]<=b[i][j]. r[i][j]同理。
那么以该点a[i][j]拓展的最大全0子矩阵即为 b[i][j]*(l[i][j]+r[i][j]+1).
最大全0子正方形则取两者的min值相乘即可。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N][N], b[N][N], l[N][N], r[N][N], ans1, ans2, n, m, st[N], head; void sol()
{
FOR(i,,n) FOR(j,,m) b[i][j]=(a[i][j])?:b[i-][j]+;
FOR(i,,n) {
head=; st[head]=;
FOR(j,,m) {
while (head>&&b[i][st[head]]>=b[i][j]) --head;
l[i][j]=j-st[head]-; st[++head]=j;
}
head=; st[head]=m+;
for (int j=m; j>=; --j) {
while (head>&&b[i][st[head]]>=b[i][j]) --head;
r[i][j]=st[head]-j-; st[++head]=j;
}
FOR(j,,m) {
ans1=max(ans1,min(b[i][j],l[i][j]+r[i][j]+)*min(b[i][j],l[i][j]+r[i][j]+));
ans2=max(ans2,b[i][j]*(l[i][j]+r[i][j]+));
}
}
}
int main ()
{
scanf("%d%d",&n,&m);
FOR(i,,n) FOR(j,,m) {
scanf("%d",&a[i][j]);
if ((i+j)&) a[i][j]^=;
}
sol();
FOR(i,,n) FOR(j,,m) a[i][j]^=;
sol();
printf("%d\n%d\n",ans1,ans2);
return ;
}
BZOJ 1057 棋盘制作(最大01相间子矩阵)的更多相关文章
- BZOJ 1057 棋盘制作
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴 ...
- 【以前的空间】bzoj [ZJOI2007]棋盘制作
具体可以去跪<浅谈用极大化思想解决最大子矩形问题>(p.s. 蒟蒻跪了还是很晕,不过想到之前usaco好像是最后一章的一道题……看了下代码顿然醒悟) 也就是如果用o(nm)的方法维护一个极 ...
- BZOJ 1057:[ZJOI2007]棋盘制作(最大01子矩阵+奇偶性)
[ZJOI2007]棋盘制作 时间限制: 20 Sec 内存限制: 162 MB[题目描述]国际象棋是世界上最古老的博 ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- 【BZOJ 1057】 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的 ...
- 【BZOJ】1057: [ZJOI2007]棋盘制作(单调栈)
http://www.lydsy.com/JudgeOnline/problem.php?id=1057 同某一题差不多?记不清是哪题了.. 就是每一行进行单调栈维护递增的高度,在进栈和出栈维护一下长 ...
- 棋盘制作 BZOJ 1057
棋盘制作 [问题描述] 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴 ...
随机推荐
- 北京Uber司机7月13日奖励政策更新
各位司机朋友: 从7月13日(周一)起,奖励政策将进行调整,具体如下: 滴滴快车单单2.5倍,注册地址:http://www.udache.com/如何注册Uber司机(全国版最新最详细注册流程)/月 ...
- tarjan算法求最近公共祖先
tarjian算法 LCA: LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们 ...
- sqlite helper
//-------------------------------------------------------------------------- // // Copyright (c) BUS ...
- 7、Java并发编程:深入剖析ThreadLocal
Java并发编程:深入剖析ThreadLocal 想必很多朋友对ThreadLocal并不陌生,今天我们就来一起探讨下ThreadLocal的使用方法和实现原理.首先,本文先谈一下对ThreadLoc ...
- SpringBoot入门(二)——起步依赖
本文来自网易云社区 在前一篇我们通过简单几步操作就生成了一个可以直接运行的Web程序,这是因为SpringBoot代替我们做了许多工作,概括来讲可以分为起步依赖和自动配置.这一篇先来看看起步依赖. 项 ...
- java 创建具有参数化类型的数组
1. List<String>[] ls; Object[] objects = ls; objects[1] = new ArrayList<Integer>(); 先把数组 ...
- thinkphp5保存远程图片到本地
代码 protected function saveImg($imgUrl){ $ext=strrchr($imgUrl,'.'); if(!in_array($ext,['.jpg','.png', ...
- Jmeter断言、参数化及集合点
JMeter---QPS(Query Per Second) QPS为每秒查询率.是一台查询服务器每秒能够处理的查询次数,在因特网上,作为域名系统服务器的性能经常用每秒查询率来衡量.步骤:1.添加线程 ...
- python 终极篇 ---- 中间件
中间件------------------------>>>>>>>>>>>>> 中间件是一个用来处理django的响应与 ...
- leetcode个人题解——#5 Container with most water
class Solution { public: string longestPalindrome(string s) { int length = s.length(); ) return s; ; ...