题意翻译

给你一棵树,每次挑选这棵树的两个叶子,加上他们之间的边数(距离),然后将其中一个点去掉,问你边数(距离)之和最大可以是多少.

题目描述

You are given an unweighted tree with n n n vertices. Then n−1 n-1 n−1 following operations are applied to the tree. A single operation consists of the following steps:

  1. choose two leaves;
  2. add the length of the simple path between them to the answer;
  3. remove one of the chosen leaves from the tree.

Initial answer (before applying operations) is 0 0 0 . Obviously after n−1 n-1 n−1 such operations the tree will consist of a single vertex.

Calculate the maximal possible answer you can achieve, and construct a sequence of operations that allows you to achieve this answer!

输入输出格式

输入格式:

The first line contains one integer number n n n ( 2<=n<=2⋅105 2<=n<=2·10^{5} 2<=n<=2⋅105 ) — the number of vertices in the tree.

Next n−1 n-1 n−1 lines describe the edges of the tree in form ai,bi a_{i},b_{i} ai​,bi​ ( 1<=ai 1<=a_{i} 1<=ai​ , bi<=n b_{i}<=n bi​<=n , ai≠bi a_{i}≠b_{i} ai​≠bi​ ). It is guaranteed that given graph is a tree.

输出格式:

In the first line print one integer number — maximal possible answer.

In the next n−1 n-1 n−1 lines print the operations in order of their applying in format ai,bi,ci a_{i},b_{i},c_{i} ai​,bi​,ci​ , where ai,bi a_{i},b_{i} ai​,bi​ — pair of the leaves that are chosen in the current operation ( 1<=ai 1<=a_{i} 1<=ai​ , bi<=n b_{i}<=n bi​<=n ), ci c_{i} ci​ ( 1<=ci<=n 1<=c_{i}<=n 1<=ci​<=n , ci=ai c_{i}=a_{i} ci​=ai​ or ci=bi c_{i}=b_{i} ci​=bi​ ) — choosen leaf that is removed from the tree in the current operation.

See the examples for better understanding.

输入输出样例

输入样例#1:

3
1 2
1 3
输出样例#1:

3
2 3 3
2 1 1
输入样例#2:

5
1 2
1 3
2 4
2 5
输出样例#2:

9
3 5 5
4 3 3
4 1 1
4 2 2

Solution:

  昨天学长讲课的题目,思路贼有意思。

  我们先打表$O(n^3)$枚举答案,枚举到$n=11$时会发现后面答案每次加$49$,这样就可以直接乱搞了。

代码:

 #include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
using namespace __gnu_pbds;
int n;
ll ans;
gp_hash_table<int,bool>mp; il int solve(int x){
int ans,tot=;
for(int i=;i<=x;i++) for(int j=;i+j<=x;j++) for(int k=;i+j+k<=x;k++){
ans=i+j*+k*+(x-i-j-k)*;
if(!mp[ans]) mp[ans]=,tot++;
}
return tot;
} int main(){
ios::sync_with_stdio();
cin>>n;
n<=?printf("%d\n",solve(n)):printf("%lld\n",solve()+1ll*(n-)*);
return ;
}

CF997B Roman Digits的更多相关文章

  1. Codeforces Round #493 (Div. 2)D. Roman Digits 第一道打表找规律题目

    D. Roman Digits time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  2. Codeforces 998D. Roman Digits 【打表找规律】

    <题目链接> 题目大意: 现在有无限个 1,5,10,50这四个数字,从中恰好挑选n个数字,问你这些数字的和总共有多少种不同的情况. 解题分析: 由于此题 n 的范围特别大,达到了1e9, ...

  3. Codeforces Round #493 (Div. 1) B. Roman Digits 打表找规律

    题意: 我们在研究罗马数字.罗马数字只有4个字符,I,V,X,L分别代表1,5,10,100.一个罗马数字的值为该数字包含的字符代表数字的和,而与字符的顺序无关.例如XXXV=35,IXI=12. 现 ...

  4. Codeforces Round #493 (Div. 2)

    C - Convert to Ones 给你一个01串 x是反转任意子串的代价 y是将子串全部取相反的代价 问全部变成1的最小代价 两种可能 一种把1全部放到一边 然后把剩下的0变成1  要么把所有的 ...

  5. Codeforces Round #493 (Div 2) (A~E)

    目录 Codeforces 998 A.Balloons B.Cutting C.Convert to Ones D.Roman Digits E.Sky Full of Stars(容斥 计数) C ...

  6. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  7. Codeforces Round #235 (Div. 2) D. Roman and Numbers(如压力dp)

    Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standard i ...

  8. [Swift]LeetCode12. 整数转罗马数字 | Integer to Roman

    Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M. Symbol Value I 1 ...

  9. Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp

    题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...

随机推荐

  1. BZOJ1029_建筑抢修_KEY

    题目传送门 这是一道贪心的问题. 总体做法是这样的:先按照报废的快慢从小到大SORT一遍,优先修报废快的.同时开一个大根堆(C++的朋友可以用priority_queue),用来记录已经修了的建筑的耗 ...

  2. springBoot 自定义redisTemplate

    package com.atirm.mybatismutiplesource.config.RedisConfig; import com.atirm.mybatismutiplesource.ent ...

  3. libevent学习六(Connect listeners )

      创建与释放 //backlog需要查询平台说明,在linux2.2以后 backlog就变成了已完成连接但未accept的队列的最大值(原来是处于syn状态的,现在换成sysctl 控制的参数tc ...

  4. Python3.6+selenium3.8+Firefox5.7 环境搭建

    大家好,我是阿哲,本人是从php转岗过来学习测试的一名小菜! 在学习selenium过程中,发现运行selenium有很多的问题. 我们在利用pip install selenium 安装的最新版后, ...

  5. Linux命令应用大词典-第43章iptables和arptables防火墙

    43.1 iptables-save:保存iptables规则 43.2 iptables-restore:恢复iptables规则 43.3 iptables:IPv4数据包过滤和NAT管理工具 4 ...

  6. tpo-08 C2 A strategy for attracting customers

    第 1 段 1.Listen to a conversation between a student and a business professor. 听一段学生和教授的对话. 第 2 段 1.So ...

  7. centos 6.5 启动时卡在进度条位置无法进入系统解决办法。

    今天公司服务器因突然断电导致phddns 花生壳 启动失败,一直卡在启动进度条页面. 解决办法 1.按F5查看卡在什么位置, 2.查看解决方法:程序卡住的情况下,直接备份资料后,卸载程序重启就可以了. ...

  8. java一些面试题

    java虚拟机 什么时候会触发full gc System.gc()方法的调用 老年代空间不足 永生区空间不足(JVM规范中运行时数据区域中的方法区,在HotSpot虚拟机中又被习惯称为永生代或者永生 ...

  9. 应用Response.Write实现带有进度条的多文件上传

    前几天,写过一篇随笔“使用RESPONSE.WRITE实现在页面的生命周期中前后台的交互”.说是交互,实际上也主要是在ASP.NET的页面周期中 从后台利用RESPONSE.WRITE向前台即时的推送 ...

  10. 二 Capacity Scheduler 计算能力调度器

    官网的写的太难懂,参考:http://www.360doc.com/content/14/0603/14/14935022_383254798.shtml Capacity Scheduler 一种可 ...