题意翻译

给你一棵树,每次挑选这棵树的两个叶子,加上他们之间的边数(距离),然后将其中一个点去掉,问你边数(距离)之和最大可以是多少.

题目描述

You are given an unweighted tree with n n n vertices. Then n−1 n-1 n−1 following operations are applied to the tree. A single operation consists of the following steps:

  1. choose two leaves;
  2. add the length of the simple path between them to the answer;
  3. remove one of the chosen leaves from the tree.

Initial answer (before applying operations) is 0 0 0 . Obviously after n−1 n-1 n−1 such operations the tree will consist of a single vertex.

Calculate the maximal possible answer you can achieve, and construct a sequence of operations that allows you to achieve this answer!

输入输出格式

输入格式:

The first line contains one integer number n n n ( 2<=n<=2⋅105 2<=n<=2·10^{5} 2<=n<=2⋅105 ) — the number of vertices in the tree.

Next n−1 n-1 n−1 lines describe the edges of the tree in form ai,bi a_{i},b_{i} ai​,bi​ ( 1<=ai 1<=a_{i} 1<=ai​ , bi<=n b_{i}<=n bi​<=n , ai≠bi a_{i}≠b_{i} ai​≠bi​ ). It is guaranteed that given graph is a tree.

输出格式:

In the first line print one integer number — maximal possible answer.

In the next n−1 n-1 n−1 lines print the operations in order of their applying in format ai,bi,ci a_{i},b_{i},c_{i} ai​,bi​,ci​ , where ai,bi a_{i},b_{i} ai​,bi​ — pair of the leaves that are chosen in the current operation ( 1<=ai 1<=a_{i} 1<=ai​ , bi<=n b_{i}<=n bi​<=n ), ci c_{i} ci​ ( 1<=ci<=n 1<=c_{i}<=n 1<=ci​<=n , ci=ai c_{i}=a_{i} ci​=ai​ or ci=bi c_{i}=b_{i} ci​=bi​ ) — choosen leaf that is removed from the tree in the current operation.

See the examples for better understanding.

输入输出样例

输入样例#1:

3
1 2
1 3
输出样例#1:

3
2 3 3
2 1 1
输入样例#2:

5
1 2
1 3
2 4
2 5
输出样例#2:

9
3 5 5
4 3 3
4 1 1
4 2 2

Solution:

  昨天学长讲课的题目,思路贼有意思。

  我们先打表$O(n^3)$枚举答案,枚举到$n=11$时会发现后面答案每次加$49$,这样就可以直接乱搞了。

代码:

 #include<bits/stdc++.h>
#include<ext/pb_ds/assoc_container.hpp>
#include<ext/pb_ds/hash_policy.hpp>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
using namespace __gnu_pbds;
int n;
ll ans;
gp_hash_table<int,bool>mp; il int solve(int x){
int ans,tot=;
for(int i=;i<=x;i++) for(int j=;i+j<=x;j++) for(int k=;i+j+k<=x;k++){
ans=i+j*+k*+(x-i-j-k)*;
if(!mp[ans]) mp[ans]=,tot++;
}
return tot;
} int main(){
ios::sync_with_stdio();
cin>>n;
n<=?printf("%d\n",solve(n)):printf("%lld\n",solve()+1ll*(n-)*);
return ;
}

CF997B Roman Digits的更多相关文章

  1. Codeforces Round #493 (Div. 2)D. Roman Digits 第一道打表找规律题目

    D. Roman Digits time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  2. Codeforces 998D. Roman Digits 【打表找规律】

    <题目链接> 题目大意: 现在有无限个 1,5,10,50这四个数字,从中恰好挑选n个数字,问你这些数字的和总共有多少种不同的情况. 解题分析: 由于此题 n 的范围特别大,达到了1e9, ...

  3. Codeforces Round #493 (Div. 1) B. Roman Digits 打表找规律

    题意: 我们在研究罗马数字.罗马数字只有4个字符,I,V,X,L分别代表1,5,10,100.一个罗马数字的值为该数字包含的字符代表数字的和,而与字符的顺序无关.例如XXXV=35,IXI=12. 现 ...

  4. Codeforces Round #493 (Div. 2)

    C - Convert to Ones 给你一个01串 x是反转任意子串的代价 y是将子串全部取相反的代价 问全部变成1的最小代价 两种可能 一种把1全部放到一边 然后把剩下的0变成1  要么把所有的 ...

  5. Codeforces Round #493 (Div 2) (A~E)

    目录 Codeforces 998 A.Balloons B.Cutting C.Convert to Ones D.Roman Digits E.Sky Full of Stars(容斥 计数) C ...

  6. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  7. Codeforces Round #235 (Div. 2) D. Roman and Numbers(如压力dp)

    Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standard i ...

  8. [Swift]LeetCode12. 整数转罗马数字 | Integer to Roman

    Roman numerals are represented by seven different symbols: I, V, X, L, C, D and M. Symbol Value I 1 ...

  9. Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp

    题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...

随机推荐

  1. 青岛Uber优步司机奖励政策(9月14日~9月20日)

    由于上周银行系统升级,工资延后 9/14-9/20奖励细则 滴滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不 ...

  2. #3.14 Piday#我的圆周率日

    本文来自网易云社区 作者:马宝 圆周率日(Pi day) 2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率."终极"圆周率日是 ...

  3. 2019年猪年海报PSD模板-第七部分

    14套精美猪年海报,免费猪年海报,下载地址:百度网盘,https://pan.baidu.com/s/1pE3X9AYirog1W8FSxbMiAQ              

  4. Qt-LCD电子时钟

    先上效果图吧 就是这个样子,简单的时间显示时间. 这里需要注意的是,我们最好建立一个空文件,这里我们需要建立一个集成QLCDNumber的类 具体方法如下图 一下是源代码 digiclock.h #i ...

  5. 为什么测试人员必须掌握Linux?

    相信点进来的小伙伴不是对Linux感兴趣就是对测试感兴趣了,也希望本文可以帮助之前接触过Linux的小伙伴找到继续坚持学习下去的动力,之前没接触过Linux的小伙伴也能找到开始学习Linux的兴趣. ...

  6. 即刻开始使用Kotlin开发Android的12个原因(KAD 30)

    作者:Antonio Leiva 时间:Jul, 11, 2017 原文链接:https://antonioleiva.com/reasons-kotlin-android/ 这组文章已到最后了,它们 ...

  7. selenium,unittest——参数化url,并多线程加快脚本运行速度

    利用参数化连续打开网页: #encoding=utf-8import unittestimport paramunittestimport timefrom selenium import webdr ...

  8. Python零基础入门必知

    Python自学知识点总结 //2018.10.09 1. Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido ...

  9. SpriteKit在复制节点时留了一个巨坑给开发者,需要开发者手动把复制节点的isPaused设置为false

    根据When an overlay node with actions is copied there is currently a SpriteKit bug where the node’s is ...

  10. informix如何查询第一条记录

    1.select first 1 * from shop; 正序查询第一条数据 2.select first 1 * from shop order by create_time desc; 按创建时 ...