1.从方差代价函数说起(Quadratic cost)

代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为:

其中y是我们期望的输出,a为神经元的实际输出【 a=σ(z), where z=wx+b 】。

在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数:

然后更新w、b:

w <—— w - η* ∂C/∂w = w - η * a *σ′(z)

b <—— b - η* ∂C/∂b = b - η * a * σ′(z)

因为sigmoid函数的性质,导致σ′(z)在z取大部分值时会很小(如下图标出来的两端,几近于平坦),这样会使得w和b更新非常慢(因为η * a * σ′(z)这一项接近于0)。

2.交叉熵代价函数(cross-entropy cost function)

为了克服这个缺点,引入了交叉熵代价函数(下面的公式对应一个神经元,多输入单输出):

其中y为期望的输出,a为神经元实际输出【a=σ(z), where z=∑Wj*Xj+b】

与方差代价函数一样,交叉熵代价函数同样有两个性质:

  • 非负性。(所以我们的目标就是最小化代价函数)
  • 当真实输出a与期望输出y接近的时候,代价函数接近于0.(比如y=0,a~0;y=1,a~1时,代价函数都接近0)。

另外,它可以克服方差代价函数更新权重过慢的问题。我们同样看看它的导数:

可以看到,导数中没有σ′(z)这一项,权重的更新是受σ(z)−y这一项影响,即受误差的影响。所以当误差大的时候,权重更新就快,当误差小的时候,权重的更新就慢。这是一个很好的性质。

以上说的是单层的,如果多层:

3.总结

  • cross-entropy cost几乎总是比quadratic cost函数好

  • 如果神经元的方程式现行的,用哪个quadratic函数(不会有学习慢的问题)
  • 当我们用sigmoid函数作为神经元的激活函数时,最好使用交叉熵代价函数来替代方差代价函数,以避免训练过程太慢。
  • 不过,你也许会问,为什么是交叉熵函数?导数中不带σ′(z)项的函数有无数种,怎么就想到用交叉熵函数?这自然是有来头的,更深入的讨论就不写了,少年请自行了解。

  • 另外,交叉熵函数的形式是−[ylna+(1−y)ln(1−a)]而不是 −[alny+(1−a)ln(1−y)],为什么?因为当期望输出的y=0时,lny没有意义;当期望y=1时,ln(1-y)没有意义。而因为a是sigmoid函数的实际输出,永远不会等于0或1,只会无限接近于0或者1,因此不存在这个问题。

4.还要说说:log-likelihood cost

对数似然函数也常用来作为softmax回归的代价函数,在上面的讨论中,我们最后一层(也就是输出)是通过sigmoid函数,因此采用了交叉熵代价函数。而深度学习中更普遍的做法是将softmax作为最后一层,此时常用的是代价函数是log-likelihood cost。

In fact, it’s useful to think of a softmax output layer with log-likelihood cost as being quite similar to a sigmoid output layer with cross-entropy cost。

其实这两者是一致的,logistic回归用的就是sigmoid函数,softmax回归是logistic回归的多类别推广。log-likelihood代价函数在二类别时就可以化简为交叉熵代价函数的形式。

利用cross-entropy cost代替quadratic cost来获得更好的收敛的更多相关文章

  1. 【转】TensorFlow四种Cross Entropy算法实现和应用

    http://www.jianshu.com/p/75f7e60dae95 作者:陈迪豪 来源:CSDNhttp://dataunion.org/26447.html 交叉熵介绍 交叉熵(Cross ...

  2. 【机器学习基础】交叉熵(cross entropy)损失函数是凸函数吗?

    之所以会有这个问题,是因为在学习 logistic regression 时,<统计机器学习>一书说它的负对数似然函数是凸函数,而 logistic regression 的负对数似然函数 ...

  3. 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

    最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...

  4. 卷积神经网络系列之softmax,softmax loss和cross entropy的讲解

    我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等.虽然现在已经开源了很多深度学习框架(比如MxNet,Caf ...

  5. 关于交叉熵(cross entropy),你了解哪些

    二分~多分~Softmax~理预 一.简介 在二分类问题中,你可以根据神经网络节点的输出,通过一个激活函数如Sigmoid,将其转换为属于某一类的概率,为了给出具体的分类结果,你可以取0.5作为阈值, ...

  6. softmax,softmax loss和cross entropy的区别

     版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014380165/article/details/77284921 我们知道卷积神经网络(CNN ...

  7. softmax,softmax loss和cross entropy的讲解

    1 softmax 我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等.这一篇主要介绍全连接层和损失层的内容, ...

  8. 一篇博客:分类模型的 Loss 为什么使用 cross entropy 而不是 classification error 或 squared error

    https://zhuanlan.zhihu.com/p/26268559 分类问题的目标变量是离散的,而回归是连续的数值. 分类问题,都用 onehot + cross entropy traini ...

  9. cross entropy与logistic regression

    维基上corss entropy的一部分 知乎上也有一个类似问题:https://www.zhihu.com/question/36307214 cross entropy有二分类和多分类的形式,分别 ...

随机推荐

  1. January 20 2017 Week 3 Friday

    I am a slow walker, but I never walk backwards. 我走得很慢,但我从来不会后退. In the past years, I walked very slo ...

  2. Event Driven Architecture

    在微服务中使用领域事件   稍微回想一下计算机硬件的工作原理我们便不难发现,整个计算机的工作过程其实就是一个对事件的处理过程.当你点击鼠标.敲击键盘或者插上U盘时,计算机便以中断的形式处理各种外部事件 ...

  3. Vue-Resource请求PHP数据失败的原因

    在写一个Vue项目的时候发现在使用Vue-Resource的post方法请求PHP数据时,完全没有反应,查阅资料才知道没有加配置参数: { emulateJSON:true } 这个配置参数的意思是: ...

  4. Apache Commons-logging使用实例

    Apache Commons-logging使用实例 本文将介绍如何在程序中使用Apache Commons-logging author: ZJ 07-3-17 Blog: [url]http:// ...

  5. 【[USACO12FEB]附近的牛Nearby Cows】

    我记得我调这道题时中耳炎,发烧,于是在学长的指导下过了也没有发题解 发现我自己的思路蛮鬼畜的 常规操作:\(f[i][j]\) 表示到\(i\)的距离为\(j\)的奶牛有多少只,但注意这只是在第二遍d ...

  6. v-bind:的基本用法

    1. v-bind:class(根据需求进行选择) <style> .box{ background-color: #ff0; } .textColor{ color: #000; } . ...

  7. 课时22.br标签(掌握)

    br标签,如何在html中换行,可以使用br标签 1.br标签的作用:换行 2.br标签的格式:<br> 3.br标签的注意点: 3.1多个br标签可以连续使用,使用了多个br标签就会换多 ...

  8. linux下安装使用tar

    安装tar,untar: yum install -y tar yum install -y untar 使用说明: 压缩 zip -r xxx.zip ./* 解压zip文件到当前目录 unzip ...

  9. Java项目排查cpu负载高

    背景 我负责的其中一个项目在空负载的情况下,CPU占用率依然保持着100%左右,线上.测试.开发的服务都一样:是什么导致的呢?在开发环境我查看了请求流量,这个流量可以忽略但CPU占用率一直在60%-1 ...

  10. JAVA中时间格式转换

    1.将任意日期格式的字符串转换为指定格式的字符串 //默认格式 String s1 = "20190110133236"; //给定格式 String s2 = "201 ...