状压dp初步。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 600
#define yql 1000000000
int n,m,top,a[N],v[N],dp[][N],now[N];
inline bool lineck(int x){return (x&(x<<))?:;}
inline void init(){
top=;int sum=<<n;
for(int i=;i<sum;i++)if(lineck(i))v[++top]=i;
}
inline bool fit(int x,int k){return (x&now[k])?:;}
inline int jcnt(int x){
int cnt=;
while(x){++cnt;x&=(x-);}
return cnt;
}
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
while(scanf("%d%d",&m,&n)!=EOF){
init();memset(dp,,sizeof(dp));
for(int i=;i<=m;i++){
now[i]=;int x;
for(int j=;j<=n;j++){x=read();if(!x)now[i]+=(<<(n-j));}
}
for(int i=;i<=top;i++)if(fit(v[i],))dp[][i]=;
for(int i=;i<=m;i++)for(int k=;k<=top;k++){
if(!fit(v[k],i))continue;
for(int j=;j<=top;j++){
if(!fit(v[j],i-))continue;
if(v[j]&v[k])continue;
dp[i][k]=(dp[i][k]+dp[i-][j])%yql;
}
}
int ans=;
for(int i=;i<=top;i++)ans=(ans+dp[m][i])%yql;
printf("%d\n",ans);
}
}

【POJ3254】coinfield的更多相关文章

  1. 【poj3254】Corn Fields 状态压缩dp

    AC通道:http://vjudge.net/problem/POJ-3254 [题目大意] 农夫约翰购买了一处肥沃的矩形牧场,分成M*N(1<=M<=12; 1<=N<=12 ...

  2. 【poj3254】 Corn Fields

    http://poj.org/problem?id=3254 (题目链接) 题意 给出一块n*m的田地,有些能够耕种,有些不能.要求将牛两两不相邻的放在田中,牛的个数至少为1个.问有多少种放法. So ...

  3. 【POJ3254】Corn Fields(状压DP)

    题意: 一个M x N矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相邻.问有多少种放牛方案( ...

  4. 【POJ3254】Corn Fields 状压DP第一次

    !!!!!!! 第一次学状压DP,其实就是运用位运算来实现一些比较,挺神奇的.. 为什么要发“!!!”因为!x&y和!(x&y)..感受一下.. #include <iostre ...

  5. 【POJ3254】Corn Fields

    http://poj.org/problem?id=3254 题意:给你一块n*m(0<n,m<=12)的地图,其中有的方格是肥沃的(用1表示),有的方格是贫瘠的(用0表示).现在约翰要在 ...

  6. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  7. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  8. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  9. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

随机推荐

  1. 【bzoj4579】[Usaco2016 Open]Closing the Farm 并查集

    题目描述 Farmer John and his cows are planning to leave town for a long vacation, and so FJ wants to tem ...

  2. 进程间通讯-3(Manager)-实现数据的同时修改

    Manager 可以实现列表,字典,变量,锁,信号量,事件等的数据之间的共享.Manager已经默认加锁了.控制数据不会乱. 实现了不同进程之间数据的共享,并且可以同时修改. from multipr ...

  3. 【刷题】洛谷 P3901 数列找不同

    题目描述 现有数列 \(A_1,A_2,\cdots,A_N\) ,Q 个询问 \((L_i,R_i)\) , \(A_{Li} ,A_{Li+1},\cdots,A_{Ri}\) 是否互不相同 输入 ...

  4. [洛谷P4092][HEOI2016/TJOI2016]树

    题目大意:给你一棵树,有两个操作: $C\;x:$给第$x$个节点打上标记 $Q\;x:$询问第$x$个节点的祖先中最近的打过标记的点(自己也是自己的祖先) 题解:树剖,可以维护区间或,然后若一段区间 ...

  5. BZOJ4514:[SDOI2016]数字配对——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4514 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj ...

  6. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  7. 【神仙题】【P4885】 灭顶之灾

    传送门 Description 请将题目名称的首字母连起来读 Scarlet有一张$n*m$的神秘表格.现在Scarlet向表格中填数字,她会从第一行中的某个格子起,按照从左往右,从上往下的顺序依次填 ...

  8. Javascript中的date对象和getTime()方法

    有些时候我们需要计算两个日期间的天数,或者小时数等等.下面用JavaScript实现这个需求,然后学习一下需要用到的一些JavaScript函数. JavaScript程序如下: 1 <scri ...

  9. https客户端遇到过的问题

    1.用.p12格式的证书,在windows上调试完全没问题,在Linux服务器上,提示无效证书格式. 解决方法:将.p12格式的证书转换为.jks格式的证书. 将.p12格式的证书转换为.jks格式的 ...

  10. 覆盖的面积 HDU - 1255 (线段树-扫描线)模板提

    给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. Input输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1& ...