一,环境配置

1,修改win下的host文件:即C:\Windows\System32\drivers\etc\host中添加集群中机子的ip

2,win下hadoop,并为win的环境变量配置hadoop_home,添加winutils.exe放到$HADOOP_HOME/bin下

3,使用idea新建maven项目,其中pom.xml设置如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>big</groupId>
<artifactId>data</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.5</version>
</dependency>
<!-- <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs-client</artifactId>
<version>2.7.5</version>
</dependency>-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.7.5</version>
</dependency>
</dependencies> </project>

4,拷贝ha集群中hadoop的配置文件到idea中resource中,hadoop的具体配置如下:

core-site.xml:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>cent1:2181,cent2:2181,cent3:2181</value>
</property>
<!--<property>
<name>hadoop.tmp.dir</name>
<value>/opt/hadoop2</value>
<description>A base for other temporary directories.</description>
</property>-->
</configuration>

hdfs-site.xml:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>cent1:9000</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>cent2:9000</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>cent1:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>cent2:50070</value>
</property>
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://cent2:8485;cent3:8485;cent4:8485/mycluster</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/jn/data</value>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property> </configuration>

mapred-site.xml:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

yarn-site.xml:

<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration> <!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>cent1</value>
</property>
</configuration>

log4j.properties:

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. # Define some default values that can be overridden by system properties
hadoop.root.logger=INFO,console
hadoop.log.dir=.
hadoop.log.file=hadoop.log # Define the root logger to the system property "hadoop.root.logger".
log4j.rootLogger=${hadoop.root.logger}, EventCounter # Logging Threshold
log4j.threshold=ALL # Null Appender
log4j.appender.NullAppender=org.apache.log4j.varia.NullAppender #
# Rolling File Appender - cap space usage at 5gb.
#
hadoop.log.maxfilesize=256MB
hadoop.log.maxbackupindex=20
log4j.appender.RFA=org.apache.log4j.RollingFileAppender
log4j.appender.RFA.File=${hadoop.log.dir}/${hadoop.log.file} log4j.appender.RFA.MaxFileSize=${hadoop.log.maxfilesize}
log4j.appender.RFA.MaxBackupIndex=${hadoop.log.maxbackupindex} log4j.appender.RFA.layout=org.apache.log4j.PatternLayout # Pattern format: Date LogLevel LoggerName LogMessage
log4j.appender.RFA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
# Debugging Pattern format
#log4j.appender.RFA.layout.ConversionPattern=%d{ISO8601} %-5p %c{2} (%F:%M(%L)) - %m%n #
# Daily Rolling File Appender
# log4j.appender.DRFA=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFA.File=${hadoop.log.dir}/${hadoop.log.file} # Rollover at midnight
log4j.appender.DRFA.DatePattern=.yyyy-MM-dd log4j.appender.DRFA.layout=org.apache.log4j.PatternLayout # Pattern format: Date LogLevel LoggerName LogMessage
log4j.appender.DRFA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
# Debugging Pattern format
#log4j.appender.DRFA.layout.ConversionPattern=%d{ISO8601} %-5p %c{2} (%F:%M(%L)) - %m%n #
# console
# Add "console" to rootlogger above if you want to use this
# log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n #
# TaskLog Appender
# #Default values
hadoop.tasklog.taskid=null
hadoop.tasklog.iscleanup=false
hadoop.tasklog.noKeepSplits=4
hadoop.tasklog.totalLogFileSize=100
hadoop.tasklog.purgeLogSplits=true
hadoop.tasklog.logsRetainHours=12 log4j.appender.TLA=org.apache.hadoop.mapred.TaskLogAppender
log4j.appender.TLA.taskId=${hadoop.tasklog.taskid}
log4j.appender.TLA.isCleanup=${hadoop.tasklog.iscleanup}
log4j.appender.TLA.totalLogFileSize=${hadoop.tasklog.totalLogFileSize} log4j.appender.TLA.layout=org.apache.log4j.PatternLayout
log4j.appender.TLA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n #
# HDFS block state change log from block manager
#
# Uncomment the following to suppress normal block state change
# messages from BlockManager in NameNode.
#log4j.logger.BlockStateChange=WARN #
#Security appender
#
hadoop.security.logger=INFO,NullAppender
hadoop.security.log.maxfilesize=256MB
hadoop.security.log.maxbackupindex=20
log4j.category.SecurityLogger=${hadoop.security.logger}
hadoop.security.log.file=SecurityAuth-${user.name}.audit
log4j.appender.RFAS=org.apache.log4j.RollingFileAppender
log4j.appender.RFAS.File=${hadoop.log.dir}/${hadoop.security.log.file}
log4j.appender.RFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.RFAS.MaxFileSize=${hadoop.security.log.maxfilesize}
log4j.appender.RFAS.MaxBackupIndex=${hadoop.security.log.maxbackupindex} #
# Daily Rolling Security appender
#
log4j.appender.DRFAS=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFAS.File=${hadoop.log.dir}/${hadoop.security.log.file}
log4j.appender.DRFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.DRFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.DRFAS.DatePattern=.yyyy-MM-dd #
# hadoop configuration logging
# # Uncomment the following line to turn off configuration deprecation warnings.
# log4j.logger.org.apache.hadoop.conf.Configuration.deprecation=WARN #
# hdfs audit logging
#
hdfs.audit.logger=INFO,NullAppender
hdfs.audit.log.maxfilesize=256MB
hdfs.audit.log.maxbackupindex=20
log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=${hdfs.audit.logger}
log4j.additivity.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=false
log4j.appender.RFAAUDIT=org.apache.log4j.RollingFileAppender
log4j.appender.RFAAUDIT.File=${hadoop.log.dir}/hdfs-audit.log
log4j.appender.RFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
log4j.appender.RFAAUDIT.MaxFileSize=${hdfs.audit.log.maxfilesize}
log4j.appender.RFAAUDIT.MaxBackupIndex=${hdfs.audit.log.maxbackupindex} #
# mapred audit logging
#
mapred.audit.logger=INFO,NullAppender
mapred.audit.log.maxfilesize=256MB
mapred.audit.log.maxbackupindex=20
log4j.logger.org.apache.hadoop.mapred.AuditLogger=${mapred.audit.logger}
log4j.additivity.org.apache.hadoop.mapred.AuditLogger=false
log4j.appender.MRAUDIT=org.apache.log4j.RollingFileAppender
log4j.appender.MRAUDIT.File=${hadoop.log.dir}/mapred-audit.log
log4j.appender.MRAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.MRAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
log4j.appender.MRAUDIT.MaxFileSize=${mapred.audit.log.maxfilesize}
log4j.appender.MRAUDIT.MaxBackupIndex=${mapred.audit.log.maxbackupindex} # Custom Logging levels #log4j.logger.org.apache.hadoop.mapred.JobTracker=DEBUG
#log4j.logger.org.apache.hadoop.mapred.TaskTracker=DEBUG
#log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=DEBUG # Jets3t library
log4j.logger.org.jets3t.service.impl.rest.httpclient.RestS3Service=ERROR # AWS SDK & S3A FileSystem
log4j.logger.com.amazonaws=ERROR
log4j.logger.com.amazonaws.http.AmazonHttpClient=ERROR
log4j.logger.org.apache.hadoop.fs.s3a.S3AFileSystem=WARN #
# Event Counter Appender
# Sends counts of logging messages at different severity levels to Hadoop Metrics.
#
log4j.appender.EventCounter=org.apache.hadoop.log.metrics.EventCounter #
# Job Summary Appender
#
# Use following logger to send summary to separate file defined by
# hadoop.mapreduce.jobsummary.log.file :
# hadoop.mapreduce.jobsummary.logger=INFO,JSA
#
hadoop.mapreduce.jobsummary.logger=${hadoop.root.logger}
hadoop.mapreduce.jobsummary.log.file=hadoop-mapreduce.jobsummary.log
hadoop.mapreduce.jobsummary.log.maxfilesize=256MB
hadoop.mapreduce.jobsummary.log.maxbackupindex=20
log4j.appender.JSA=org.apache.log4j.RollingFileAppender
log4j.appender.JSA.File=${hadoop.log.dir}/${hadoop.mapreduce.jobsummary.log.file}
log4j.appender.JSA.MaxFileSize=${hadoop.mapreduce.jobsummary.log.maxfilesize}
log4j.appender.JSA.MaxBackupIndex=${hadoop.mapreduce.jobsummary.log.maxbackupindex}
log4j.appender.JSA.layout=org.apache.log4j.PatternLayout
log4j.appender.JSA.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n
log4j.logger.org.apache.hadoop.mapred.JobInProgress$JobSummary=${hadoop.mapreduce.jobsummary.logger}
log4j.additivity.org.apache.hadoop.mapred.JobInProgress$JobSummary=false #
# Yarn ResourceManager Application Summary Log
#
# Set the ResourceManager summary log filename
yarn.server.resourcemanager.appsummary.log.file=rm-appsummary.log
# Set the ResourceManager summary log level and appender
yarn.server.resourcemanager.appsummary.logger=${hadoop.root.logger}
#yarn.server.resourcemanager.appsummary.logger=INFO,RMSUMMARY # To enable AppSummaryLogging for the RM,
# set yarn.server.resourcemanager.appsummary.logger to
# <LEVEL>,RMSUMMARY in hadoop-env.sh # Appender for ResourceManager Application Summary Log
# Requires the following properties to be set
# - hadoop.log.dir (Hadoop Log directory)
# - yarn.server.resourcemanager.appsummary.log.file (resource manager app summary log filename)
# - yarn.server.resourcemanager.appsummary.logger (resource manager app summary log level and appender) log4j.logger.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=${yarn.server.resourcemanager.appsummary.logger}
log4j.additivity.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=false
log4j.appender.RMSUMMARY=org.apache.log4j.RollingFileAppender
log4j.appender.RMSUMMARY.File=${hadoop.log.dir}/${yarn.server.resourcemanager.appsummary.log.file}
log4j.appender.RMSUMMARY.MaxFileSize=256MB
log4j.appender.RMSUMMARY.MaxBackupIndex=20
log4j.appender.RMSUMMARY.layout=org.apache.log4j.PatternLayout
log4j.appender.RMSUMMARY.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n # HS audit log configs
#mapreduce.hs.audit.logger=INFO,HSAUDIT
#log4j.logger.org.apache.hadoop.mapreduce.v2.hs.HSAuditLogger=${mapreduce.hs.audit.logger}
#log4j.additivity.org.apache.hadoop.mapreduce.v2.hs.HSAuditLogger=false
#log4j.appender.HSAUDIT=org.apache.log4j.DailyRollingFileAppender
#log4j.appender.HSAUDIT.File=${hadoop.log.dir}/hs-audit.log
#log4j.appender.HSAUDIT.layout=org.apache.log4j.PatternLayout
#log4j.appender.HSAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
#log4j.appender.HSAUDIT.DatePattern=.yyyy-MM-dd # Http Server Request Logs
#log4j.logger.http.requests.namenode=INFO,namenoderequestlog
#log4j.appender.namenoderequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.namenoderequestlog.Filename=${hadoop.log.dir}/jetty-namenode-yyyy_mm_dd.log
#log4j.appender.namenoderequestlog.RetainDays=3 #log4j.logger.http.requests.datanode=INFO,datanoderequestlog
#log4j.appender.datanoderequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.datanoderequestlog.Filename=${hadoop.log.dir}/jetty-datanode-yyyy_mm_dd.log
#log4j.appender.datanoderequestlog.RetainDays=3 #log4j.logger.http.requests.resourcemanager=INFO,resourcemanagerrequestlog
#log4j.appender.resourcemanagerrequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.resourcemanagerrequestlog.Filename=${hadoop.log.dir}/jetty-resourcemanager-yyyy_mm_dd.log
#log4j.appender.resourcemanagerrequestlog.RetainDays=3 #log4j.logger.http.requests.jobhistory=INFO,jobhistoryrequestlog
#log4j.appender.jobhistoryrequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.jobhistoryrequestlog.Filename=${hadoop.log.dir}/jetty-jobhistory-yyyy_mm_dd.log
#log4j.appender.jobhistoryrequestlog.RetainDays=3 #log4j.logger.http.requests.nodemanager=INFO,nodemanagerrequestlog
#log4j.appender.nodemanagerrequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.nodemanagerrequestlog.Filename=${hadoop.log.dir}/jetty-nodemanager-yyyy_mm_dd.log
#log4j.appender.nodemanagerrequestlog.RetainDays=3

二,编写WordCount程序

import java.io.IOException;
import java.net.URI;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
System.setProperty("hadoop.home.dir", "E:\\softs\\majorSoft\\hadoop-2.7.5");//初始时解决winutils异常
conf.set("mapreduce.app-submission.cross-platform", "true");//允许远程访问
Path input = new Path(URI.create("hdfs://mycluster/testFile/wordCount"));
Path output = new Path(URI.create("hdfs://mycluster/output"));
Job job = Job.getInstance(conf, "word count");
job.setJar("E:\\bigData\\hadoopDemo\\out\\artifacts\\wordCount_jar\\hadoopDemo.jar");//必须要先打包出jar包
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, input);
FileOutputFormat.setOutputPath(job, output);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

三,遇到的异常

1,RuntimeException, ClassNotFoundException: Class WordCount$Map not found . Mapper class issue
job.setJar("WordCount.jar"); 2,Exception message:/bin/bash:第0行fg:无任务控制 #表示运行远程访问格式
conf.set(“mapreduce.app-submission.cross-platform”, “true”);
和设置hdfs-site.xml
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property> 3. java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
System.setProperty("hadoop.home.dir", "E:\\softs\\majorSoft\\hadoop-2.7.5"); 4,无法访问hdfs权限和识别不到集群
修改C:\Windows\System32\drivers\etc文件

win下idea远程提交WordCount任务到HA集群的更多相关文章

  1. Idea里面远程提交spark任务到yarn集群

    Idea里面远程提交spark任务到yarn集群 1.本地idea远程提交到yarn集群 2.运行过程中可能会遇到的问题 2.1首先需要把yarn-site.xml,core-site.xml,hdf ...

  2. VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群

    VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群 下一篇:VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群-整合Zookeeper和Hbase 近期 ...

  3. 在linux环境下安装redis并且搭建自己的redis集群

    此文档主要介绍在linux环境下安装redis并且搭建自己的redis集群 搭建环境: ubuntun 16.04 + redis-3.0.6 本文章分为三个部分:redis安装.搭建redis集群 ...

  4. VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群—整合Zookeeper和Hbase

    VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群-整合Zookeeper和Hbase 这篇是接着上一篇hadoop集群搭建进行的.在hadoop-1.2.1基础之上安装zoo ...

  5. win下写任务提交给集群

    一,复制和删除hdfs中的文件 import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.spark.{SparkConf, S ...

  6. 联想ThinkPad S3-S440虚拟机安装,ubuntu安装,Hadoop(2.7.1)详解及WordCount运行,spark集群搭建

    下载ubuntu操作系统版本 ubuntu-14.10-desktop-amd64.iso(64位) 安装过程出现错误: This kernel requires an X86-64 CPU,but ...

  7. Windows下ELK环境搭建(单机多节点集群部署)

    1.背景 日志主要包括系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的错误及错误发生的原因.经常分析日志可以了解服务器的负荷,性能安全性,从而及时 ...

  8. linux系统下对网站实施负载均衡+高可用集群需要考虑的几点

    随着linux系统的成熟和广泛普及,linux运维技术越来越受到企业的关注和追捧.在一些中小企业,尤其是牵涉到电子商务和电子广告类的网站,通常会要求作负载均衡和高可用的Linux集群方案. 那么如何实 ...

  9. Docker环境下搭建DNS LVS(keepAlived) OpenResty服务器简易集群

    现在上网已经成为每个人必备的技能,打开浏览器,输入网址,回车,简单的几步就能浏览到漂亮的网页,那从请求发出到返回漂亮的页面是怎么做到的呢,我将从公司中一般的分层架构角度考虑搭建一个简易集群来实现.目标 ...

随机推荐

  1. 【hdoj_2391】FilthyRich

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=2391 题目大意:给定一个矩阵,从左上角第一个元素开始到右下最后一个元素,寻找一条路线,使得路线经过的矩阵元 ...

  2. Linux系统格式化磁盘+挂载分区

    1.查看可使用的磁盘: $fdisk -l 2.对磁盘进行分区: $fdisk /dev/vdb 3.格式化磁盘: $fdisk -l --查看已经分区的磁盘 $mkfs -t ext4 /dev/v ...

  3. 走进 Akka.NET

    官方文档:https://getakka.net/index.html 官网:https://petabridge.com/ 一.Akka.NET 是什么? Akka 是一个构建高并发.分布式和弹性消 ...

  4. 搭建owncloud私有云

    参考:教程1,教程2,教程3,教程4 硬件:raspi 3b+ 系统:UbuntuMate 步骤: 1.安装Apache2 sudo apt-get install apache2 完成后访问服务器地 ...

  5. javascript大神修炼记(3)——条件分支

    读者朋友们好,我们今天接着前面的讲,前面已经大概了讲了一下运算符,今天的任务主要就是讲解逻辑条件分支,循环. 我们先就来模拟一个逻辑块,就用我们经常接触到的买车票来说吧,车票的价格对不同的人价格是有差 ...

  6. 解决Mysql 服务无法启动 服务没有报告任何错误

    MySQL数据库在升级到5.7版本后,和之前的版本有些不一样,没有data文件夹,我们都知道MySQL数据库文件是保存在data文件夹中的,网上有人说把5.6版本的data文件夹拷贝一个,这种说法听听 ...

  7. JDBC浅析

    今天简单的说一下jdbc,本来这玩意儿也很简单. 大家只需要记住其中的几个重要的类就行了,它们都在sql包里.今天主要是拿mysql来连接.先看一下主要的几个类吧. 1.Conenction 2.St ...

  8. MediaPlayer滑动不准的问题

    因为MediaPlayer在seekto是异步进行的,如果在滑动过程中暂停,会导致滑动不准确的情况,这时候就需要添加滑动完成的监听即setOnSeekCompleteListener

  9. What is Double Spending & How Does Bitcoin Handle It?

    https://coinsutra.com/bitcoin-double-spending/ Bitcoin is gaining rapid popularity and adoption acro ...

  10. 分布式框架Dubbo配置和实例

    准备工作: 1.ZooKeeper:需要去Apache Zookeeper官网下载Zookeeper.tar.gz包,Dubbo是依赖于Zookeeper的 2.Maven:需要去Apache Mav ...