一,环境配置

1,修改win下的host文件:即C:\Windows\System32\drivers\etc\host中添加集群中机子的ip

2,win下hadoop,并为win的环境变量配置hadoop_home,添加winutils.exe放到$HADOOP_HOME/bin下

3,使用idea新建maven项目,其中pom.xml设置如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>big</groupId>
<artifactId>data</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.5</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.5</version>
</dependency>
<!-- <dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs-client</artifactId>
<version>2.7.5</version>
</dependency>-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.7.5</version>
</dependency>
</dependencies> </project>

4,拷贝ha集群中hadoop的配置文件到idea中resource中,hadoop的具体配置如下:

core-site.xml:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>cent1:2181,cent2:2181,cent3:2181</value>
</property>
<!--<property>
<name>hadoop.tmp.dir</name>
<value>/opt/hadoop2</value>
<description>A base for other temporary directories.</description>
</property>-->
</configuration>

hdfs-site.xml:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>cent1:9000</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>cent2:9000</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>cent1:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>cent2:50070</value>
</property>
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://cent2:8485;cent3:8485;cent4:8485/mycluster</value>
</property>
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/opt/jn/data</value>
</property>
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property> </configuration>

mapred-site.xml:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>

yarn-site.xml:

<?xml version="1.0"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
-->
<configuration> <!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>cent1</value>
</property>
</configuration>

log4j.properties:

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. # Define some default values that can be overridden by system properties
hadoop.root.logger=INFO,console
hadoop.log.dir=.
hadoop.log.file=hadoop.log # Define the root logger to the system property "hadoop.root.logger".
log4j.rootLogger=${hadoop.root.logger}, EventCounter # Logging Threshold
log4j.threshold=ALL # Null Appender
log4j.appender.NullAppender=org.apache.log4j.varia.NullAppender #
# Rolling File Appender - cap space usage at 5gb.
#
hadoop.log.maxfilesize=256MB
hadoop.log.maxbackupindex=20
log4j.appender.RFA=org.apache.log4j.RollingFileAppender
log4j.appender.RFA.File=${hadoop.log.dir}/${hadoop.log.file} log4j.appender.RFA.MaxFileSize=${hadoop.log.maxfilesize}
log4j.appender.RFA.MaxBackupIndex=${hadoop.log.maxbackupindex} log4j.appender.RFA.layout=org.apache.log4j.PatternLayout # Pattern format: Date LogLevel LoggerName LogMessage
log4j.appender.RFA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
# Debugging Pattern format
#log4j.appender.RFA.layout.ConversionPattern=%d{ISO8601} %-5p %c{2} (%F:%M(%L)) - %m%n #
# Daily Rolling File Appender
# log4j.appender.DRFA=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFA.File=${hadoop.log.dir}/${hadoop.log.file} # Rollover at midnight
log4j.appender.DRFA.DatePattern=.yyyy-MM-dd log4j.appender.DRFA.layout=org.apache.log4j.PatternLayout # Pattern format: Date LogLevel LoggerName LogMessage
log4j.appender.DRFA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
# Debugging Pattern format
#log4j.appender.DRFA.layout.ConversionPattern=%d{ISO8601} %-5p %c{2} (%F:%M(%L)) - %m%n #
# console
# Add "console" to rootlogger above if you want to use this
# log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n #
# TaskLog Appender
# #Default values
hadoop.tasklog.taskid=null
hadoop.tasklog.iscleanup=false
hadoop.tasklog.noKeepSplits=4
hadoop.tasklog.totalLogFileSize=100
hadoop.tasklog.purgeLogSplits=true
hadoop.tasklog.logsRetainHours=12 log4j.appender.TLA=org.apache.hadoop.mapred.TaskLogAppender
log4j.appender.TLA.taskId=${hadoop.tasklog.taskid}
log4j.appender.TLA.isCleanup=${hadoop.tasklog.iscleanup}
log4j.appender.TLA.totalLogFileSize=${hadoop.tasklog.totalLogFileSize} log4j.appender.TLA.layout=org.apache.log4j.PatternLayout
log4j.appender.TLA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n #
# HDFS block state change log from block manager
#
# Uncomment the following to suppress normal block state change
# messages from BlockManager in NameNode.
#log4j.logger.BlockStateChange=WARN #
#Security appender
#
hadoop.security.logger=INFO,NullAppender
hadoop.security.log.maxfilesize=256MB
hadoop.security.log.maxbackupindex=20
log4j.category.SecurityLogger=${hadoop.security.logger}
hadoop.security.log.file=SecurityAuth-${user.name}.audit
log4j.appender.RFAS=org.apache.log4j.RollingFileAppender
log4j.appender.RFAS.File=${hadoop.log.dir}/${hadoop.security.log.file}
log4j.appender.RFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.RFAS.MaxFileSize=${hadoop.security.log.maxfilesize}
log4j.appender.RFAS.MaxBackupIndex=${hadoop.security.log.maxbackupindex} #
# Daily Rolling Security appender
#
log4j.appender.DRFAS=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFAS.File=${hadoop.log.dir}/${hadoop.security.log.file}
log4j.appender.DRFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.DRFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.DRFAS.DatePattern=.yyyy-MM-dd #
# hadoop configuration logging
# # Uncomment the following line to turn off configuration deprecation warnings.
# log4j.logger.org.apache.hadoop.conf.Configuration.deprecation=WARN #
# hdfs audit logging
#
hdfs.audit.logger=INFO,NullAppender
hdfs.audit.log.maxfilesize=256MB
hdfs.audit.log.maxbackupindex=20
log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=${hdfs.audit.logger}
log4j.additivity.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=false
log4j.appender.RFAAUDIT=org.apache.log4j.RollingFileAppender
log4j.appender.RFAAUDIT.File=${hadoop.log.dir}/hdfs-audit.log
log4j.appender.RFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
log4j.appender.RFAAUDIT.MaxFileSize=${hdfs.audit.log.maxfilesize}
log4j.appender.RFAAUDIT.MaxBackupIndex=${hdfs.audit.log.maxbackupindex} #
# mapred audit logging
#
mapred.audit.logger=INFO,NullAppender
mapred.audit.log.maxfilesize=256MB
mapred.audit.log.maxbackupindex=20
log4j.logger.org.apache.hadoop.mapred.AuditLogger=${mapred.audit.logger}
log4j.additivity.org.apache.hadoop.mapred.AuditLogger=false
log4j.appender.MRAUDIT=org.apache.log4j.RollingFileAppender
log4j.appender.MRAUDIT.File=${hadoop.log.dir}/mapred-audit.log
log4j.appender.MRAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.MRAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
log4j.appender.MRAUDIT.MaxFileSize=${mapred.audit.log.maxfilesize}
log4j.appender.MRAUDIT.MaxBackupIndex=${mapred.audit.log.maxbackupindex} # Custom Logging levels #log4j.logger.org.apache.hadoop.mapred.JobTracker=DEBUG
#log4j.logger.org.apache.hadoop.mapred.TaskTracker=DEBUG
#log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=DEBUG # Jets3t library
log4j.logger.org.jets3t.service.impl.rest.httpclient.RestS3Service=ERROR # AWS SDK & S3A FileSystem
log4j.logger.com.amazonaws=ERROR
log4j.logger.com.amazonaws.http.AmazonHttpClient=ERROR
log4j.logger.org.apache.hadoop.fs.s3a.S3AFileSystem=WARN #
# Event Counter Appender
# Sends counts of logging messages at different severity levels to Hadoop Metrics.
#
log4j.appender.EventCounter=org.apache.hadoop.log.metrics.EventCounter #
# Job Summary Appender
#
# Use following logger to send summary to separate file defined by
# hadoop.mapreduce.jobsummary.log.file :
# hadoop.mapreduce.jobsummary.logger=INFO,JSA
#
hadoop.mapreduce.jobsummary.logger=${hadoop.root.logger}
hadoop.mapreduce.jobsummary.log.file=hadoop-mapreduce.jobsummary.log
hadoop.mapreduce.jobsummary.log.maxfilesize=256MB
hadoop.mapreduce.jobsummary.log.maxbackupindex=20
log4j.appender.JSA=org.apache.log4j.RollingFileAppender
log4j.appender.JSA.File=${hadoop.log.dir}/${hadoop.mapreduce.jobsummary.log.file}
log4j.appender.JSA.MaxFileSize=${hadoop.mapreduce.jobsummary.log.maxfilesize}
log4j.appender.JSA.MaxBackupIndex=${hadoop.mapreduce.jobsummary.log.maxbackupindex}
log4j.appender.JSA.layout=org.apache.log4j.PatternLayout
log4j.appender.JSA.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n
log4j.logger.org.apache.hadoop.mapred.JobInProgress$JobSummary=${hadoop.mapreduce.jobsummary.logger}
log4j.additivity.org.apache.hadoop.mapred.JobInProgress$JobSummary=false #
# Yarn ResourceManager Application Summary Log
#
# Set the ResourceManager summary log filename
yarn.server.resourcemanager.appsummary.log.file=rm-appsummary.log
# Set the ResourceManager summary log level and appender
yarn.server.resourcemanager.appsummary.logger=${hadoop.root.logger}
#yarn.server.resourcemanager.appsummary.logger=INFO,RMSUMMARY # To enable AppSummaryLogging for the RM,
# set yarn.server.resourcemanager.appsummary.logger to
# <LEVEL>,RMSUMMARY in hadoop-env.sh # Appender for ResourceManager Application Summary Log
# Requires the following properties to be set
# - hadoop.log.dir (Hadoop Log directory)
# - yarn.server.resourcemanager.appsummary.log.file (resource manager app summary log filename)
# - yarn.server.resourcemanager.appsummary.logger (resource manager app summary log level and appender) log4j.logger.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=${yarn.server.resourcemanager.appsummary.logger}
log4j.additivity.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=false
log4j.appender.RMSUMMARY=org.apache.log4j.RollingFileAppender
log4j.appender.RMSUMMARY.File=${hadoop.log.dir}/${yarn.server.resourcemanager.appsummary.log.file}
log4j.appender.RMSUMMARY.MaxFileSize=256MB
log4j.appender.RMSUMMARY.MaxBackupIndex=20
log4j.appender.RMSUMMARY.layout=org.apache.log4j.PatternLayout
log4j.appender.RMSUMMARY.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n # HS audit log configs
#mapreduce.hs.audit.logger=INFO,HSAUDIT
#log4j.logger.org.apache.hadoop.mapreduce.v2.hs.HSAuditLogger=${mapreduce.hs.audit.logger}
#log4j.additivity.org.apache.hadoop.mapreduce.v2.hs.HSAuditLogger=false
#log4j.appender.HSAUDIT=org.apache.log4j.DailyRollingFileAppender
#log4j.appender.HSAUDIT.File=${hadoop.log.dir}/hs-audit.log
#log4j.appender.HSAUDIT.layout=org.apache.log4j.PatternLayout
#log4j.appender.HSAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
#log4j.appender.HSAUDIT.DatePattern=.yyyy-MM-dd # Http Server Request Logs
#log4j.logger.http.requests.namenode=INFO,namenoderequestlog
#log4j.appender.namenoderequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.namenoderequestlog.Filename=${hadoop.log.dir}/jetty-namenode-yyyy_mm_dd.log
#log4j.appender.namenoderequestlog.RetainDays=3 #log4j.logger.http.requests.datanode=INFO,datanoderequestlog
#log4j.appender.datanoderequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.datanoderequestlog.Filename=${hadoop.log.dir}/jetty-datanode-yyyy_mm_dd.log
#log4j.appender.datanoderequestlog.RetainDays=3 #log4j.logger.http.requests.resourcemanager=INFO,resourcemanagerrequestlog
#log4j.appender.resourcemanagerrequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.resourcemanagerrequestlog.Filename=${hadoop.log.dir}/jetty-resourcemanager-yyyy_mm_dd.log
#log4j.appender.resourcemanagerrequestlog.RetainDays=3 #log4j.logger.http.requests.jobhistory=INFO,jobhistoryrequestlog
#log4j.appender.jobhistoryrequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.jobhistoryrequestlog.Filename=${hadoop.log.dir}/jetty-jobhistory-yyyy_mm_dd.log
#log4j.appender.jobhistoryrequestlog.RetainDays=3 #log4j.logger.http.requests.nodemanager=INFO,nodemanagerrequestlog
#log4j.appender.nodemanagerrequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.nodemanagerrequestlog.Filename=${hadoop.log.dir}/jetty-nodemanager-yyyy_mm_dd.log
#log4j.appender.nodemanagerrequestlog.RetainDays=3

二,编写WordCount程序

import java.io.IOException;
import java.net.URI;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
System.setProperty("hadoop.home.dir", "E:\\softs\\majorSoft\\hadoop-2.7.5");//初始时解决winutils异常
conf.set("mapreduce.app-submission.cross-platform", "true");//允许远程访问
Path input = new Path(URI.create("hdfs://mycluster/testFile/wordCount"));
Path output = new Path(URI.create("hdfs://mycluster/output"));
Job job = Job.getInstance(conf, "word count");
job.setJar("E:\\bigData\\hadoopDemo\\out\\artifacts\\wordCount_jar\\hadoopDemo.jar");//必须要先打包出jar包
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, input);
FileOutputFormat.setOutputPath(job, output);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

三,遇到的异常

1,RuntimeException, ClassNotFoundException: Class WordCount$Map not found . Mapper class issue
job.setJar("WordCount.jar"); 2,Exception message:/bin/bash:第0行fg:无任务控制 #表示运行远程访问格式
conf.set(“mapreduce.app-submission.cross-platform”, “true”);
和设置hdfs-site.xml
<property>
<name>dfs.permissions.enabled</name>
<value>false</value>
</property> 3. java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
System.setProperty("hadoop.home.dir", "E:\\softs\\majorSoft\\hadoop-2.7.5"); 4,无法访问hdfs权限和识别不到集群
修改C:\Windows\System32\drivers\etc文件

win下idea远程提交WordCount任务到HA集群的更多相关文章

  1. Idea里面远程提交spark任务到yarn集群

    Idea里面远程提交spark任务到yarn集群 1.本地idea远程提交到yarn集群 2.运行过程中可能会遇到的问题 2.1首先需要把yarn-site.xml,core-site.xml,hdf ...

  2. VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群

    VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群 下一篇:VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群-整合Zookeeper和Hbase 近期 ...

  3. 在linux环境下安装redis并且搭建自己的redis集群

    此文档主要介绍在linux环境下安装redis并且搭建自己的redis集群 搭建环境: ubuntun 16.04 + redis-3.0.6 本文章分为三个部分:redis安装.搭建redis集群 ...

  4. VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群—整合Zookeeper和Hbase

    VMWare9下基于Ubuntu12.10搭建Hadoop-1.2.1集群-整合Zookeeper和Hbase 这篇是接着上一篇hadoop集群搭建进行的.在hadoop-1.2.1基础之上安装zoo ...

  5. win下写任务提交给集群

    一,复制和删除hdfs中的文件 import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.spark.{SparkConf, S ...

  6. 联想ThinkPad S3-S440虚拟机安装,ubuntu安装,Hadoop(2.7.1)详解及WordCount运行,spark集群搭建

    下载ubuntu操作系统版本 ubuntu-14.10-desktop-amd64.iso(64位) 安装过程出现错误: This kernel requires an X86-64 CPU,but ...

  7. Windows下ELK环境搭建(单机多节点集群部署)

    1.背景 日志主要包括系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的错误及错误发生的原因.经常分析日志可以了解服务器的负荷,性能安全性,从而及时 ...

  8. linux系统下对网站实施负载均衡+高可用集群需要考虑的几点

    随着linux系统的成熟和广泛普及,linux运维技术越来越受到企业的关注和追捧.在一些中小企业,尤其是牵涉到电子商务和电子广告类的网站,通常会要求作负载均衡和高可用的Linux集群方案. 那么如何实 ...

  9. Docker环境下搭建DNS LVS(keepAlived) OpenResty服务器简易集群

    现在上网已经成为每个人必备的技能,打开浏览器,输入网址,回车,简单的几步就能浏览到漂亮的网页,那从请求发出到返回漂亮的页面是怎么做到的呢,我将从公司中一般的分层架构角度考虑搭建一个简易集群来实现.目标 ...

随机推荐

  1. python中执行shell命令的几个方法小结(转载)

    转载:http://www.jb51.net/article/55327.htm python中执行shell命令的几个方法小结 投稿:junjie 字体:[增加 减小] 类型:转载 时间:2014- ...

  2. 字符串Hash相关

    其实也并不是什么特别难的算法,但是我个人实在是不太喜欢字符串之类的东西(字符串神马的真的是麻烦),于是一直拖着不想看,然后模板题之类的也懒得做. Hash的思想其实也没什么复杂的,就是给定一系列字符串 ...

  3. 【js学习】js连接RabbitMQ达到实时消息推送

    js连接RabbitMQ达到实时消息推送 最近在自己捯饬一个网站,有一个功能是需要后端处理完数据把数据发布到MQ中,前端再从MQ中接收数据.但是前端连接MQ又成了一个问题,在网上搜了下资料,点进去一篇 ...

  4. 提高sqlmap爆破效率

     提高sqlmap爆破效率 sqlmap在注入成功后,会尝试获取数据库和表的结构.对于MSSQL.MySQL.SQLite之类数据库,sqlmap可以通过系统数据库.系统数据表获取数据库和表的结构.但 ...

  5. AvalonJS学习笔记(一)

    一.关于AvalonJS avalon是国内的一个MVVM框架,是从knockout发展起来的 分为两个版本 avalon.js版本,支持IE6及非常老的标准浏览器.这里的标准浏览器特指W3C阵营中的 ...

  6. 【数形结合】Erratic Expansion

    [UVa12627]Erratic Expansion 算法入门经典第8章8-12(P245) 题目大意:起初有一个红球,每一次红球会分成三红一蓝,蓝球会分成四蓝(如图顺序),问K时的时候A~B行中有 ...

  7. 【二分】Subsequence

    [POJ3061]Subsequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15908   Accepted:  ...

  8. 【区间dp】【四边形不等式】CDOJ1653 最小生成树?

    四边形不等式优化的资料去网上找下吧!很多. 可以证明,这个题里面,合并的代价满足较小区间+较大区间<=交错区间. 可以自己画个图看看. #include<cstdio> #inclu ...

  9. python3-开发进阶 heapq模块(如何查找最大或最小的N个元素)

    一.怎样从一个集合中获得最大或者最小的 N 个元素列表? heapq 模块有两个函数:nlargest() 和 nsmallest() 可以完美解决这个问题. import heapq nums = ...

  10. ZXing for Android 修改为竖屏模式

    zxing github连接:https://github.com/zxing/zxing 以下为修改方法 Step 1: Add following lines to rotate data bef ...