Non-Nullable Types vs C#: Fixing the Billion Dollar Mistake (转载)
One of the top suggestions (currently #15 on uservoice) for improving C# is the addition of non-nullable reference types. This is not surprising, considering the number of functions that start with a block of ‘if (x == null) throw new ArgumentNullException(“x”)’ lines. Not to mention the head-slapping bugs null pointers cause. There’s a reason Tony Hoare calls the null pointer his billion dollar mistake.
In this post I will talk about the obstacles that make adding non-nullable types to C# difficult, and propose a way fo
Obstacles
Adding non-nullable types to C# seems, on the surface, easy. Put a “!” at the end of the type to mean non-nullable, add some nullable/non-nullable conversation operators, implement a few compiler checks and you’re done… right? Oops, we just broke the cohesiveness of the language. The compiler keeps refusing to compile “new object![10]” (it can’t figure out what to fill the array with initially). Naturally, all of the generic classes that happen to use arrays also refuse to work for the same reason (goodbye List<T>) but some generic class that don’t use arrays like TaskCompletionSource<T> also fail. Bleh.
I should note at this point that C# is a mature language with mountains of already-written code that we aren’t allowed to break. If adding non-null types to the language breaks existing code, then non-null types won’t get added. We have to work within the constraints of backwards compatibility, which is tricky when removing widely-used assumptions. To give an idea of the sorts of code we can’t break, I’ve put together a list of the cases I think are important. Before reading on, you may want to spend a minute imagining how you would add non-nullability to C#. See if your idea meshes with each case in an elegant way:
- Existing generic code allocates arrays:
public T[] ToArray(IReadOnlyCollection<T> items) {
var r = new T[items.Count];
...
return r;
} - Existing generic code uses default(T):
public T FirstOrDefault(IEnumerable<T> items) {
using (var e = items.GetEnumerator()) {
return e.MoveNext() ? e.Current : default(T);
}
} - Existing generic code propagates generic parameters:
default(KeyValuePair<K, V>) // if K or V has no default value...
- Existing generic classes that intuitively should accept non-nullable types (a.k.a. are “non-null safe”) may use constructs that assume a default value exists:
public class List<T> {
...
_items = new T[capacity];
...
} - Classes that are intuitively non-null safe may not always initialize fields, implicitly assuming a default value is used (and you may be able to access that value via reflection):
public struct Maybe<T> {
private readonly T _value;
public readonly bool HasValue;
public T Value {
get {
if (!HasValue) throw new InvalidOperationException();
return _value;
}
}
// default constructor creates a 'no value' instance where _value = default(T)
public Maybe(T value) { HasValue = true; _value = value; }
} - A common pattern, ‘bool TryX(out T result)’, assumes a default value to assign to ‘result’ when failing:
bool TryParseValue(out T value) {
if (...) {
...
value = ...
return true;
}
value = default(T);
return false;
} - Some interfaces are intuitively non-null safe, but use the TryX pattern:
public interface IReadOnlyDictionary<TKey, TValue> : IReadOnlyCollection<KeyValuePair<TKey, TValue>> {
...
bool TryGetValue(TKey key, out TValue value);
...
} - Most interfaces happen to be (somewhat) naively non-null safe (although implementations may not be), but it’s possible to create ones that aren’t:
public interface IMustHaveDefault<T> {
void DoIt(T value = default(T));
} - Analogously, most delegates happen to be non-null safe, but it’s not guaranteed:
delegate void MustHaveDefault<T>(T value = default(T))
- Existing code may extend legacy code that won’t be updated for non-nullability:
interface IBloomFilter<T> : SomeOldUnmaintainedLibrary.IHeuristicSet<T> {
...
}
How did your impromptu idea do?
The fundamental problem here is an assumption deeply ingrained into C#: the assumption that every type has a default value. Consider: if T doesn’t (or might not have) a default value then the compiler has nothing to use when evaluating default(T), initializing a field of type T, or initializing the items in a new array of T. This is a problem when it comes to non-null reference types because, although some reference types have a decent non-null default value (e.g. the default non-null String could be the empty string), most do not. Consider: what is the default non-null value of IEnumerator<int>? IObservable<bool>? UserControl? NetworkStream? The simple answer is that they don’t have one. The “best” you can do is give a mock instance that fails if you try to use it… but we already have that and it’s called null.
Note that there may be important cases I’ve missed here. C# is a very large language and I don’t have experience with all of its parts, particularly native interop things like unsafe and pinned. There are surely plenty of complications with respect to type inference and lambdas that I’m not exploring. I’m also going to gloss over the implications on reflection, other than to note that the result of GetType will be unable to indicate non-nullability and that this may be counter-intuitive to users. (Hopefully whatever I’ve overlooked won’t make what I propose in the next section utterly useless.)
Proposed Solution
All the obstacles I’ve mentioned can be overcome. The way I’ve approached the problem is by adding three bits of syntax to C#: an ‘is non-null’ type modifier, a ‘may be non-null’ type parameter modifier, and a ‘withdefault’ keyword to undo making a type non-nullable. The basic idea for making code non-null safe it to wrap T! into withdefault(T!) on the way in and cast back to T! on the way out.
I find it difficult to succinctly explain what I mean in prose, so I’m just going to go with a list. These are the semantic changes I would make to C# to allow non-nullable types:
- Appending “!” to a (nullable) reference type means “is non-nullable”. A variable of type “object!” can reference an object, but may not be a null reference.
- Appending “!” to a generic type parameter means “is potentially non-nullable”. The type parameter T in “class C<T>” can’t be “object!”, but it could be if the declaration was “class C<T!>”.
- Invoking “withdefault” on a non-nullable reference type returns the associated nullable reference type but otherwise returns the same type. withdefault(object!) = object = withdefault(object), withdefault(int) = int, withdefault(int?) = int?.
- For any (nullable) reference type T there is an explicit cast operator from T to T! that throws when given null.
- A T! “is a” T. Consequently, for example, an IEnumerable<T!> is an IEnumerable<T> by covariance.
- The expression “default(T)” is a compile error when T is potentially non-nullable.
- The expression “new T[n]” is a compile error when T is potentially non-nullable and n is not a constant zero. Note that new T[] { … } may still work.
- Using a potentially non-nullable type as the argument to a generic type parameter that is not marked as potentially non-nullable is a compile error.
- A struct or class containing a field with a potentially non-nullable type is not given a default empty constructor by the compiler.
- In a constructor, all fields with a potentially non-nullable type must be initialized before ‘this’ can be used.
- The type of a constructor invocation expression is now non-null when the constructed type is a reference type. For example, “new object()” has type “object!”.
- A few existing compiler errors, like disallowing constraining a generic parameter by a sealed type, need to be removed or rethought (because T! is a T, even if T is sealed).
Additionally, the following things should not be breaking changes, when done by the user:
- Changing usage of a type T to withdefault(T) or vice versa, unless T is potentially non-nullable. This allows tweaking the return types of generic methods to make sense when T is non-nullable, without breaking existing code.
- Changing a type argument from withdefault(T) to T when the type parameter is covariant, or vice versa when the type parameter is contra-variant. This is useful for interop with legacy code because we can expose non-nullability right away without painting ourselves into a corner. For example, suppose IEnumerable<T> has not been marked non-null safe. A non-null safe class can implement IEnumerable<withdefault(T)> in the interim and, once IEnumerable is made non-null safe, implementing IEnumerable<T> instead will not break existing code because a T! is a T.
Finally, some useful additions to the .Net base class library that I would recommend, although they aren’t necessary:
- A special method to create an array of a non-null type from an IReadOnlyCollection<T!>.
- A non-null safe array type that can be initialized incrementally (perhaps a better name would be CappedList<T!>).
- A standard maybe/option type that is non-null safe.
Given these language changes, it is relatively simple to update/implement code with non-null safety. As I’ve already mentioned, you just abuse withdefault(T!) and casting from T to T! to assert to the compiler that you’ve done things right (if you haven’t, you’ll get an exception during the cast at runtime). I’ll go over some examples in a moment. As more code is made non-null safe, the amount of casting and withdefault-ing you need should go down.
The changes to make code non-null safe are so simple that you might expect the conversion to be automatable. Unfortunately, human judgement is necessary in a some cases. For example, the return type of FirstOrDefault<T!> is withdefault(T!) but the return type of First<T!> is just T!. Doing the conversion automatically would require analyzing the implementations of those methods to figure out that default(T) might flow out of FirstOrDefault<T> but not First<T>. But even with a magical halt-problem-avoiding analysis, we’d find it impossible to infer the non-nullability of interfaces and abstract classes, because their implementing code may not even be in the same assembly! We must update the code by hand.
Examples
In order to give you a more concrete taste of how non-nullable types would work in practice, given that this proposal were implemented, I’ve prepared two examples. The first is a simple maybe/option type that is non-null safe:
///May contain a value or no value. Non-null safe.
public struct Maybe<T!> {
private readonly withdefault(T) _value;
public readonly bool HasValue;
public T Value {
get {
if (!HasValue) throw new InvalidOperationException();
return (T)_value;
}
}
// note: has default constructor for 'no value'
public Maybe(T value) { HasValue = true; _value = value; }
}
As you can see, the _value field is of type “withdefault(T)” but exposed as type T by using a cast inside the Value property. Note that if you tried to change the field to type T, the compiler would omit the default constructor. As a result, you would need to implement it explicitly (otherwise you can’t create the No Value instance) and, in doing so, would discover it to be impossible to satisfy the requirement that _value be initialized before ‘this’ can be accessed. Most classes would be updated in the same way: withdefault in, cast out.
The second example I have is more involved, because it uses a real existing class. I call it “how to make System.Collections.Generic.Dictionary non-null safe (in spirit)”. I used reflector to get source code for Dictionary (and cleaned it up a bit with ReSharper). However, to keep the example short, I am only including the notable changes necessary to upgrade the important public methods (Add, Remove, this[]) and the implementation of the IReadOnlyDictionary interface. Additions are highlighted in green, deletions are struck-through and highlighted in red:
public interface IEnumerable<out T!> : IEnumerable {
...
public interface IReadOnlyCollection<out T!> : IEnumerable<T> {
...
public interface IReadOnlyDictionary<TKey!, TValue!> : IReadOnlyCollection<KeyValuePair<TKey, TValue>> {
bool ContainsKey(TKey key);
bool TryGetValue(TKey key, out withdefault(TValue) value);
TValue this[TKey key] { get; }
...
public class Dictionary<TKey!, TValue!> : IReadOnlyDictionary<TKey, TValue> {
private int[] _buckets;
private int _count;
private Entry[] _entries;
private int _freeCount;
...
for (var j = ; j < _count; j++) {
if ((_entries[j].HashCode >= ) && comparer.Equals((TValue)_entries[j].Value, value))
return true;
}
...
for (var i = _buckets[num%_buckets.Length]; i >= ; i = _entries[i].Next) {
if (_entries[i].HashCode == num && Comparer.Equals((TKey)_entries[i].Key, key))
return i;
}
...
internal withdefault(TValue) GetValueOrDefault(TKey key) {
var index = FindEntry(key);
if (index >= ) return _entries[index].Value;
return default(withdefault(TValue));
}
...
for (var i = _buckets[index]; i >= ; i = _entries[i].Next) {
if ((_entries[i].HashCode == num) && Comparer.Equals((TKey)_entries[i].Key, key)) {
if (add)
...
for (var i = _buckets[index]; i >= ; i = _entries[i].Next) {
if ((_entries[i].HashCode == num) && Comparer.Equals((TKey)_entries[i].Key, key)) {
...
_entries[i].HashCode = -;
_entries[i].Next = _freeList;
_entries[i].Key = default(withdefault(TKey));
_entries[i].Value = default(withdefault(TValue));
_freeList = i;
_freeCount++;
_version++;
return true;
...
for (var k = ; k < _count; k++) {
if (destArray[k].HashCode != -)
destArray[k].HashCode = Comparer.GetHashCode((TKey)destArray[k].Key) & 0x7fffffff;
}
...
public bool TryGetValue(TKey key, out withdefault(TValue) value) {
var index = FindEntry(key);
if (index >= ) {
value = _entries[index].Value;
return true;
}
value = default(withdefault(TValue));
return false;
}
...
public TValue this[TKey key] {
...
return (TValue)_entries[index].Value;
...
private struct Entry {
public int HashCode;
public int Next;
public withdefault(TKey) Key;
public withdefault(TValue) Value;
}
...
public struct Enumerator : IEnumerator<KeyValuePair<TKey, TValue>> {
...
private withdefault(KeyValuePair<TKey, TValue>) _current;
...
public bool MoveNext() {
while (_index < _dictionary._count) {
if (_dictionary._entries[_index].HashCode >= ) {
_current = new KeyValuePair<TKey, TValue>(
(TKey)_dictionary._entries[_index].Key,
(TValue)_dictionary._entries[_index].Value);
_index++;
return true;
}
this._index++;
}
this._index = this._dictionary._count + ;
this._current = default(withdefault(KeyValuePair<TKey, TValue>))new KeyValuePair<TKey, TValue>();
return false;
}
...
Once again you can see the “write withdefault(T), read T by casting” technique, except it is used in several places. Otherwise the only notable change is to the signature of TryGetValue: the out parameter now has type withdefault(TValue). You might expect this to break existing code, because we’re changing the signature, but it works out that we only change the signature in new cases. TValue couldn’t be a non-nullable reference type before, and withdefault(T) = T in that case.
Summary
Adding non-null types to C# is do-able, but not simple and not cheap. I’m sure it overcomes the features start at -100 points threshold, but that’s before considering the implementation costs. Even if the feature was already implemented in the language, there are mountains of existing classes that need to be updated.
We may never see non-null types in C#, but I hope we do.
Non-Nullable Types vs C#: Fixing the Billion Dollar Mistake (转载)的更多相关文章
- Unity使用可空类型(Nullable Types)
译林军 范春彦|2014-04-09 09:46|5407次浏览|Unity(375)0 你怎么确定一个Vector3,int,或float变量是否被分配了一个值?一个方便的方式就是使用可空类型! 有 ...
- 【你吐吧c#每日学习】10.30 C#Nullable Types
分两种类型,value type and reference type. By default, value type owns a default value. For integer, the d ...
- Unity3d游戏开发中使用可空类型(Nullable Types)
你怎么确定一个Vector3,int,或float变量是否被分配了一个值?一个方便的方式就是使用可空类型! 有时变量携带重要信息,但仅仅有在特定的游戏事件发生时触发.比如:一个角色在你的游戏可能闲置, ...
- [Typescript 2] Nullable Types - Avoiding null and undefined Bugs
For example you have a TS app: enum PaylerPosition { Guard, Forward, Center } interface Player { nam ...
- Visual Studio 2019 preview中体验C# 8.0新语法
准备工作: Visual Studio 2019 Preview版本中并没有包含所有的C# 8.0的新功能,但目前也有一些可以试用了.在开始之前,需要进行入两项设置: 将Framework设置为.ne ...
- C# 7 新特性-2
在之前的C# 7 新特性博客中,我们谈到了Tuples,Record Type和Pattern Matching.这些都是C#新特性中最可能出现的.在本博客中,我们会提到更多的一些特性,虽然这些特性不 ...
- Kotlin重新学习及入门示例
在2017和2018其实已经对Kotlin的基础语法进行了一些学习,但是!!如今已经是2019年,中间间断时间已经很长了,所以准备接下来从0再次出发深入系统完整的来审视一下该语言,毕境如今它的地位是越 ...
- Kotlin 语言高级安卓开发入门
过去一年,使用 Kotlin 来为安卓开发的人越来越多.即使那些现在还没有使用这个语言的开发者,也会对这个语言的精髓产生共鸣,它给现在 Java 开发增加了简单并且强大的范式.Jake Wharton ...
- 编程语言大牛王垠:编程的智慧,带你少走弯路 [本文转载CocoaChina]
作者:王垠 授权本站转载. 编程是一件创造性的工作,是一门艺术.精通任何一门艺术,都需要很多的练习和领悟,所以这里提出的“智慧”,并不是号称三天瘦二十斤的减肥药,它并不能代替你自己的勤奋.然而我希望它 ...
随机推荐
- hdu 1011 树形背包
http://blog.csdn.net/libin56842/article/details/9876503 这道题和poj 1155的区别是: poj1155是边的价值,所以从边的关系入手 hdu ...
- LinearLayout中的android:layout_garvity的center_vertical和center_horizontal
当LinearLayout的排列方向是 horizontal时,只有垂直方向上的对齐方式才会生效.因为此时水平方向上的长度是不固定的,每添加一个控件,水平方向上的长度都会改变,因而无法指定该方向上的对 ...
- mysql通过一张表更新另一张表
在mysql中,通过一张表的列修改另一张关联表中的内容: 1: 修改1列 update student s, city c set s.city_name = c.name where s.city ...
- js数组的splice函数
一直没搞懂数组的splice函数,今天稍微测试了一下,了解了它的功能,在这里记录一下 1.测试 测试① var a = [1,2,3]; console.info(a.splice(1,1)); co ...
- pom文件解析
Maven的依赖是使用Maven坐标来定位的,而Maven坐标主要由GAV(groupId, artifactId, version)构成.因此,使用任何一个依赖之间,你都需要知道它的Maven坐标. ...
- react+javascript前端进阶
组合1: react技术栈(react(阮一峰react入门,官网教程).redux(阮一峰redux入门,官网教程).saga)+JS(ES6)+antd+you don`t know JS(上中下 ...
- web前端优化之内容优化
前端内容优化主要有以下几条: 1.尽量减少http请求 (1)合并文件,把多个css文件合并在一起: (2)css Sprites,把css相关的background元素进行背景图绝对定位: (3)图 ...
- create-react-app找不到配置项
npm run eject 这个一个不可逆过程,一旦你执行了,就不能回到初始化
- Ubuntu 18 使用docker安装rancher/server:stable并运行kubernetes
1.安装docker sudo apt-get install docker.io docker的版本:Docker version 17.12.1-ce 2.安装virtualbox-qt,因为vi ...
- 基于容器微服务的PaaS云平台设计(一) 实现容器微服务和持续集成
版权声明:本文为博主原创文章,欢迎转载,转载请注明作者.原文超链接 ,博主地址:http://www.cnblogs.com/SuperXJ/ 前言:关于什么是容器微服务PaaS和容器微服务PaaS的 ...