题意:一张有向图,每条边上都有wi个蘑菇,第i次经过这条边能够采到w-(i-1)*i/2个蘑菇,直到它为0。问最多能在这张图上采多少个蘑菇。

分析:在一个强连通分量内,边可以无限次地走直到该连通块内蘑菇被采完为止,因此每个强连通分量内的结果是确定的。

设一条边权值为w,最大走过次数为t,解一元二次方程得 t = (int)(1+sqrt(1+8w));则该边对所在连通块的贡献为w*t - (t-1)*t*(t+1)/6。

而不在任何一个强连通分量内的边,最多只能走一次。所以在缩点后的DAG上进行dp即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn =1e6+;
struct Edge{
int v,next;
LL val;
}edges[maxn],E[maxn];
int head[maxn],tot,H[maxn],tt;
stack<int> S;
int pre[maxn],low[maxn],sccno[maxn],dfn,scc_cnt;
LL W[maxn];
LL dp[maxn];
void init()
{
tot = dfn = scc_cnt=tt=;
memset(H,-,sizeof(H));
memset(W,,sizeof(W));
memset(dp,,sizeof(dp));
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
memset(head,-,sizeof(head));
} void AddEdge(int u,int v,LL val) {
edges[tot] = (Edge){v,head[u],val};
head[u] = tot++;
} void Tarjan(int u)
{
int v;
pre[u]=low[u]=++dfn;
S.push(u);
for(int i=head[u];~i;i=edges[i].next){
v= edges[i].v;
if(!pre[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v]){
low[u]=min(low[u],pre[v]);
}
}
if(pre[u]==low[u]){
int x;
++scc_cnt;
for(;;){
x = S.top();S.pop();
sccno[x]=scc_cnt;
if(x==u)break;
}
}
} void nAddEdge(int u,int v,LL w)
{
E[tt] = (Edge){v,H[u],w};
H[u] = tt++;
} LL dfs(int u)
{
if(dp[u]) return dp[u];
for(int i=H[u];~i;i=E[i].next){
int v = E[i].v;
dp[u] = max(dp[u],dfs(v)+E[i].val);
}
dp[u]+=W[u];
return dp[u];
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int N,M;
while(scanf("%d%d",&N,&M)==){
init();
int st,u,v; LL w;
while(M--){
scanf("%d%d%lld",&u,&v,&w);
AddEdge(u,v,w);
}
scanf("%d",&st);
for(int i=;i<=N;++i){
if(!pre[i]){
Tarjan(i);
}
} for(int u =;u<=N;++u){
for(int i =head[u];~i;i = edges[i].next){
v = edges[i].v;
LL w = edges[i].val;
if(sccno[u]!=sccno[v]){
nAddEdge(sccno[u],sccno[v],w);
}
else{
int t = (int)(+sqrt(+*w))/;
W[sccno[u]] += (LL)t*w - (LL)(t-)*t*(t+)/;
}
}
}
for(int i=;i<=scc_cnt;++i){
if(!dp[i]){
dfs(i);
}
}
printf("%lld\n",dp[sccno[st]]);
}
return ;
}

CodeForces - 894E Ralph and Mushrooms (强连通缩点+dp)的更多相关文章

  1. 【Codeforces】894E.Ralph and Mushrooms Tarjan缩点+DP

    题意 给定$n$个点$m$条边有向图及边权$w$,第$i$次经过一条边边权为$w-1-2.-..-i$,$w\ge 0$给定起点$s$问从起点出发最多能够得到权和,某条边可重复经过 有向图能够重复经过 ...

  2. UVA11324 The Largest Clique (强连通缩点+DP最长路)

    <题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...

  3. ZOJ 3795 Grouping (强连通缩点+DP最长路)

    <题目链接> 题目大意: n个人,m条关系,每条关系a >= b,说明a,b之间是可比较的,如果还有b >= c,则说明b,c之间,a,c之间都是可以比较的.问至少需要多少个集 ...

  4. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

  5. Gym - 101170B British Menu (强连通缩点+dp)

    题意:求一个有向图上的最长路(每个强连通分量的点不超过5个) 首先对强连通分量缩点,暴力预处理出len[k][i][j]表示第k个强连通分量里的第i个点和第j个点之间的最长路径,设状态(k,i,f)表 ...

  6. Codeforces 1137C Museums Tour (强连通分量, DP)

    题意和思路看这篇博客就行了:https://www.cnblogs.com/cjyyb/p/10507937.html 有个问题需要注意:对于每个scc,只需要考虑进入这个scc的时间即可,其实和从哪 ...

  7. Codeforces 894.E Ralph and Mushrooms

    E. Ralph and Mushrooms time limit per test 2.5 seconds memory limit per test 512 megabytes input sta ...

  8. Codeforces B. Mouse Hunt(强连通分解缩点)

    题目描述: Mouse Hunt time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  9. 【题解】CF894E Ralph and Mushrooms (缩点)

    [题解]CF894E Ralph and Mushrooms (缩点) 这是紫?给个解方程算法 考虑一条边若可以重复遍历说明一定有环,有环的话一定会把环上的蘑菇榨干,考虑一条边从全部到榨干的贡献是多少 ...

随机推荐

  1. 长尾分布,重尾分布(Heavy-tailed Distribution)

    Zipf分布: Zipf分布是一种符合长尾的分布: 就是指尾巴很长的分布.那么尾巴很长很厚的分布有什么特殊的呢?有两方面:一方面,这种分布会使得你的采样不准,估值不准,因为尾部占了很大部分.另一方面, ...

  2. Ubuntu14.04中安装Sublime_Text_3

    Sublime Text 简介 Sublime Text 是一款流行的文本编辑器软件,有点类似于TextMate,跨平台,可运行在Linux.Windows和Mac OS X.也是许多程序员喜欢使用的 ...

  3. 第二百三十八节,Bootstrap输入框和导航组件

    Bootstrap输入框和导航组件 学习要点: 1.输入框组件 2.导航组件 3.导航条组件 本节课我们主要学习一下Bootstrap的两个个组件功能:输入框组件和导航导航条组件. 一.输入框组件 文 ...

  4. android Dialog 底部弹出

    . if (dialShareDialog == null) { dialShareDialog = new Dialog(context, R.style.dialog); dialShareDia ...

  5. Sql Server数据批量更新

    UPDATE S SET S.[name]=T.[name],S.[sch_id]=T.[sch_id],S.[sex]=T.[sex],S.[isOk]=T.[isOk] FROM [Student ...

  6. Chrome浏览器快捷键(收藏!)

  7. 【译】.Net 垃圾回收机制原理(转)

    上一篇文章介绍了.Net 垃圾回收的基本原理和垃圾回收执行Finalize方法的内部机制:这一篇我们看下弱引用对象,代,多线程垃圾回收,大对象处理以及和垃圾回收相关的性能计数器. 让我们从弱引用对象说 ...

  8. Django之前端模板继承

    在使用Django进行web开发时,往往会构造一个基础框架模板即base.html,而后在其子模板中对它所包含站点公用部分和定义块进行重载. 首先创建一个base.html,源码为: <!DOC ...

  9. Fragment切换页面

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  10. android--WaveView(波浪形View) 的实现记录

    背景 请假回家当伴郎,由于实在无聊,就写下了此篇博客!!按照惯例,先上动态图 怎么样!效果比较赞吧!!! 思路 当我第一次看见这个效果的时候,我的第一个想法是:如果是静态的时候是什么样子的!好,再来张 ...