题意:一张有向图,每条边上都有wi个蘑菇,第i次经过这条边能够采到w-(i-1)*i/2个蘑菇,直到它为0。问最多能在这张图上采多少个蘑菇。

分析:在一个强连通分量内,边可以无限次地走直到该连通块内蘑菇被采完为止,因此每个强连通分量内的结果是确定的。

设一条边权值为w,最大走过次数为t,解一元二次方程得 t = (int)(1+sqrt(1+8w));则该边对所在连通块的贡献为w*t - (t-1)*t*(t+1)/6。

而不在任何一个强连通分量内的边,最多只能走一次。所以在缩点后的DAG上进行dp即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn =1e6+;
struct Edge{
int v,next;
LL val;
}edges[maxn],E[maxn];
int head[maxn],tot,H[maxn],tt;
stack<int> S;
int pre[maxn],low[maxn],sccno[maxn],dfn,scc_cnt;
LL W[maxn];
LL dp[maxn];
void init()
{
tot = dfn = scc_cnt=tt=;
memset(H,-,sizeof(H));
memset(W,,sizeof(W));
memset(dp,,sizeof(dp));
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
memset(head,-,sizeof(head));
} void AddEdge(int u,int v,LL val) {
edges[tot] = (Edge){v,head[u],val};
head[u] = tot++;
} void Tarjan(int u)
{
int v;
pre[u]=low[u]=++dfn;
S.push(u);
for(int i=head[u];~i;i=edges[i].next){
v= edges[i].v;
if(!pre[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!sccno[v]){
low[u]=min(low[u],pre[v]);
}
}
if(pre[u]==low[u]){
int x;
++scc_cnt;
for(;;){
x = S.top();S.pop();
sccno[x]=scc_cnt;
if(x==u)break;
}
}
} void nAddEdge(int u,int v,LL w)
{
E[tt] = (Edge){v,H[u],w};
H[u] = tt++;
} LL dfs(int u)
{
if(dp[u]) return dp[u];
for(int i=H[u];~i;i=E[i].next){
int v = E[i].v;
dp[u] = max(dp[u],dfs(v)+E[i].val);
}
dp[u]+=W[u];
return dp[u];
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int N,M;
while(scanf("%d%d",&N,&M)==){
init();
int st,u,v; LL w;
while(M--){
scanf("%d%d%lld",&u,&v,&w);
AddEdge(u,v,w);
}
scanf("%d",&st);
for(int i=;i<=N;++i){
if(!pre[i]){
Tarjan(i);
}
} for(int u =;u<=N;++u){
for(int i =head[u];~i;i = edges[i].next){
v = edges[i].v;
LL w = edges[i].val;
if(sccno[u]!=sccno[v]){
nAddEdge(sccno[u],sccno[v],w);
}
else{
int t = (int)(+sqrt(+*w))/;
W[sccno[u]] += (LL)t*w - (LL)(t-)*t*(t+)/;
}
}
}
for(int i=;i<=scc_cnt;++i){
if(!dp[i]){
dfs(i);
}
}
printf("%lld\n",dp[sccno[st]]);
}
return ;
}

CodeForces - 894E Ralph and Mushrooms (强连通缩点+dp)的更多相关文章

  1. 【Codeforces】894E.Ralph and Mushrooms Tarjan缩点+DP

    题意 给定$n$个点$m$条边有向图及边权$w$,第$i$次经过一条边边权为$w-1-2.-..-i$,$w\ge 0$给定起点$s$问从起点出发最多能够得到权和,某条边可重复经过 有向图能够重复经过 ...

  2. UVA11324 The Largest Clique (强连通缩点+DP最长路)

    <题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...

  3. ZOJ 3795 Grouping (强连通缩点+DP最长路)

    <题目链接> 题目大意: n个人,m条关系,每条关系a >= b,说明a,b之间是可比较的,如果还有b >= c,则说明b,c之间,a,c之间都是可以比较的.问至少需要多少个集 ...

  4. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

  5. Gym - 101170B British Menu (强连通缩点+dp)

    题意:求一个有向图上的最长路(每个强连通分量的点不超过5个) 首先对强连通分量缩点,暴力预处理出len[k][i][j]表示第k个强连通分量里的第i个点和第j个点之间的最长路径,设状态(k,i,f)表 ...

  6. Codeforces 1137C Museums Tour (强连通分量, DP)

    题意和思路看这篇博客就行了:https://www.cnblogs.com/cjyyb/p/10507937.html 有个问题需要注意:对于每个scc,只需要考虑进入这个scc的时间即可,其实和从哪 ...

  7. Codeforces 894.E Ralph and Mushrooms

    E. Ralph and Mushrooms time limit per test 2.5 seconds memory limit per test 512 megabytes input sta ...

  8. Codeforces B. Mouse Hunt(强连通分解缩点)

    题目描述: Mouse Hunt time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  9. 【题解】CF894E Ralph and Mushrooms (缩点)

    [题解]CF894E Ralph and Mushrooms (缩点) 这是紫?给个解方程算法 考虑一条边若可以重复遍历说明一定有环,有环的话一定会把环上的蘑菇榨干,考虑一条边从全部到榨干的贡献是多少 ...

随机推荐

  1. Mtx——Mobile Tutorial Series (LibGDX & MTX)

    http://moribitotechx.blogspot.co.uk/p/tutorial-series-libgdx-mtx.html —————————————————————————————— ...

  2. JAVA图像缩放处理

    http://www.blogjava.net/kinkding/archive/2009/05/23/277552.html ———————————————————————————————————— ...

  3. TaskTracker学习笔记

    转自:http://blog.csdn.net/androidlushangderen/article/details/41477061 上次分析完JobTracker通过TaskScheduler如 ...

  4. 马尔科夫毯(Markov Blanket)

    最优特征子集:选出特征的子集,能够比较准确的代表原来的特征.马尔科夫毯(MB)是贝叶斯网络(BN)的最有特征子集. 推测贝叶斯网络的网络结构是NP问题.贝叶斯网络中一个节点T的马尔科夫毯是其父节点,子 ...

  5. linux中常用压缩与解压命令

    一. tar文件的解压 tar -xvf db.tar 二. zip文件的压缩与解压 压缩 zip -r dest_name.zip directory_to_compress 解压 unzip de ...

  6. 简述基于Struts框架Web应用的工作流程

    简述基于Struts框架Web应用的工作流程 解答:在web应用启动时就会加载初始化ActionServlet,ActionServlet从struts-config.xml文件中读取配置信息,把它们 ...

  7. 实现Netty服务器与CocosCreate通信

    尽量采用无锁化Netty通信处理棋牌房间逻辑 一,棋牌类服务器的特点 1,棋牌类不分区不分服 一般来说,棋牌游戏都是不分区不分服的.所以棋牌类服务器要满足随着用户量的增加而扩展的需要,所以需要设计Ga ...

  8. eclipse配置weblogic服务器

    最近项目要从tocmat迁移到weblogic,使用weblogic的原因不用多说,好处不言而喻.于是准备配置基于eclipse的weblogic服务器,并将整个过程记录下来分享给大家.       ...

  9. 【BZOJ】3391: [Usaco2004 Dec]Tree Cutting网络破坏(dfs)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3391 显然判断每个点只需要判断子树是否小于等于n/2即可 那么我们虚拟一个根,然后计算每个子树的si ...

  10. Duilib教程-简单介绍

    在读这篇博客的时候,可能您已经对duilib有一定的了解.所以,我并不打算对duilib进行过多的介绍.它的内核首先由外国人编写,后来由国人一个小组接过来继续编写,于是就有了现在的Duilib. 1. ...