The idea is fairly straightforward: create an array accu that stores the accumulated sum fornums such that accu[i] = nums[0] + ... + nums[i] in the initializer of NumArray. Then just return accu[j + 1] - accu[i] in sumRange. You may try the example in the problem statement to convince yourself of this idea.

The code is as follows.


C++

 class NumArray {
public:
NumArray(vector<int> &nums) {
accu.push_back();
for (int num : nums)
accu.push_back(accu.back() + num);
} int sumRange(int i, int j) {
return accu[j + ] - accu[i];
}
private:
vector<int> accu;
}; // Your NumArray object will be instantiated and called as such:
// NumArray numArray(nums);
// numArray.sumRange(0, 1);
// numArray.sumRange(1, 2);

Python

class NumArray(object):
def __init__(self, nums):
"""
initialize your data structure here.
:type nums: List[int]
"""
self.accu = [0]
for num in nums:
self.accu += self.accu[-1] + num, def sumRange(self, i, j):
"""
sum of elements nums[i..j], inclusive.
:type i: int
:type j: int
:rtype: int
"""
return self.accu[j + 1] - self.accu[i] # Your NumArray object will be instantiated and called as such:
# numArray = NumArray(nums)
# numArray.sumRange(0, 1)
# numArray.sumRange(1, 2)

[LeetCode] Range Sum Query - Immutable的更多相关文章

  1. [LeetCode] Range Sum Query - Immutable & Range Sum Query 2D - Immutable

    Range Sum Query - Immutable Given an integer array nums, find the sum of the elements between indice ...

  2. [LeetCode] Range Sum Query - Immutable 区域和检索 - 不可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  3. LeetCode——Range Sum Query - Immutable

    Question Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), ...

  4. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  5. [LeetCode] Range Sum Query 2D - Immutable

    Very similar to Range Sum Query - Immutable, but we now need to compute a 2d accunulated-sum. In fac ...

  6. [LeetCode] 303. Range Sum Query - Immutable (Easy)

    303. Range Sum Query - Immutable class NumArray { private: vector<int> v; public: NumArray(vec ...

  7. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. [LeetCode] Range Sum Query - Mutable 区域和检索 - 可变

    Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...

  9. LeetCode_303. Range Sum Query - Immutable

    303. Range Sum Query - Immutable Easy Given an integer array nums, find the sum of the elements betw ...

随机推荐

  1. “CoreCLR is now Open Source”阅读笔记

    英文原文:CoreCLR is now Open Source 阅读笔记如下: CoreCLR是.NET Core的执行引擎,功能包括GC(Garbage Collection), JIT(将CIL代 ...

  2. C++11 并发指南三(Lock 详解)

    在 <C++11 并发指南三(std::mutex 详解)>一文中我们主要介绍了 C++11 标准中的互斥量(Mutex),并简单介绍了一下两种锁类型.本节将详细介绍一下 C++11 标准 ...

  3. js 弹出窗口 防止拦截,突破阻止,保存后打开

    <script language="javascript"> function orderprint() { var formUrl = "savedata_ ...

  4. Qt5.3 打印示例时出现错误

    说明:今天我在用Qt5.3写打印文档的时候,编译出错了,出错代码为: C:\Users\joe\Desktop\5-9\myPrint\mainwindow.cpp:35: error: undefi ...

  5. Spring AOP(配置文件方式)

    spring配置文件: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="h ...

  6. atitit.表格的绑定client side 最佳实践

    atitit.表格的绑定client side 最佳实践 1. 框架选型 1 2. #---原理和流程 1 1. 方法1 1 2. Dwr 例子 1 3. 方法2 2 4. Jq例如 2 1. 框架选 ...

  7. SQL问题集锦

    1.union和union all的区别:http://www.cnblogs.com/xiangshu/articles/2054447.html

  8. linux 下查找大于100M的文件(转)

    命令行如下 find . -type f -size +1000000k Linux系统下查找大文件或目录的技巧 当硬盘空间不够时,我们就很关心哪些目录或文件比较大,看看能否干掉一些了,怎么才能知道呢 ...

  9. 关于C++单件模式释放对象

    http://blog.csdn.net/windboyzsj/article/details/2790485 最近接触的一个项目要用到单件模式,我像往常一样哒哒(敲击键盘ing)一个单件模式的典型结 ...

  10. Asp.Net实现FORM认证的一些使用技巧(转)

    最近因为项目代码重构需要重新整理用户登录和权限控制的部分,现有的代码大体是参照了.NET的FORM认证,并结合了PORTAL KITS的登录控制,代码比较啰嗦,可维护性比较差.于是有了以下的几个需求( ...