上网搜了一下这道题的解法,主要有两个方法,一种是采用母函数的方法,一种是采用0/1背包的方法。

先说一下母函数,即生成函数,做个比喻,母函数就是一个多项式前面的系数的一个整体的集合,而子函数就是这个多项式每一项前面的系数。主要用于解决组合问题,类似于钱币的组合问题。利用母函数解题时,首先要写出表达式,通常是多项式的乘积形式,类似于:(x^(v[K]*n1[K])+x^(v[K]*(n1[K]+1))+x^(v[K]*(n1[K]+2))+...+x^(v[K]*n2[K]))。

例如,对于有n种物品,如果第i种物品有ki个,我们可以列式n个项相乘 (x^0+x^1+...x^k1)*(x^0+x^1+...x^k2)*...*(x^0+x^1+...x^kn),每一项表示对于第i件物品,可以有(x^0+x^1+...x^ki)中取法,【注意系数都为1,因为同种物品取i件,它的取法是1】多项相乘:因为取m件物品这件事实要分为对n种物品各取分别取1次【0~ki个】,  是组合计数的乘法原理, x^m 的系数是组合成m件物品的所有方案数

一、母函数解题的核心就是要找到:

k(对应具体问题中物品的种类数)、

v[i](表示该乘积表达式第i个因子的权重,对应于具体问题的每个物品的价值或者权重)、

n1[i](表示该乘积表达式第i个因子的起始系数,对应于具体问题中的每个物品的最少个数,即最少要取多少个)、

n2[i](表示该乘积表达式第i个因子的终止系数,对应于具体问题中的每个物品的最多个数,即最多要取多少个)。

之后迭代计算,并将结果放在一个数组a中。其中a[i]表示权重为i的组合数。

二、母函数对应的具体题型:

主要是普通型母函数,主要用在组合和整数拆分问题上。

关于母函数的百度百科:http://baike.baidu.com/view/2415279.htm

三、模板

先贴一下我收集到的母函数模板:

模板一

     //a为计算结果,b为中间结果。
int a[MAX],b[MAX];
//初始化a
memset(a,,sizeof(a));
a[]=;
for (int i=;i<=17;i++)//循环每个因子
{
memset(b,,sizeof(b));
for (int j=n1[i];j<=n2[i]&&j*v[i]<=P;j++)//循环每个因子的每一项 ,p为可能的最大指数
for (int k=;k+j*v[i]<=P;k++)//循环a的每个项
b[k+j*v[i]]+=a[k];//把结果加到对应位
memcpy(a,b,sizeof(b));//b赋值给a
}

有一个last变量记录当前的最大指数,可以提高程序的效率:

模板二:

 //初始化a,因为有last,所以这里无需初始化其他位
a[]=;
int last=;
for (int i=;i<K;i++)
{
int last2=min(last+n[i]*v[i],P);//计算下一次的last
memset(b,,sizeof(int)*(last2+));//只清空b[0..last2]
for (int j=n1[i];j<=n2[i]&&j*v[i]<=last2;j++)//这里是last2
for (int k=;k<=last&&k+j*v[i]<=last2;k++)//这里一个是last,一个是last2
b[k+j*v[i]]+=a[k];
memcpy(a,b,sizeof(int)*(last2+));//b赋值给a,只赋值0..last2
last=last2;//更新last
}

因为刚刚接触到acm,最近做的事简单的背包专题,所以此处仅附上背包的思路和解法:

思路:将背包的容量定为所有物品总价值的一半,然后就是0/1背包问题,dp[half]中存储的就是较小的半份。其中,dp[j]表示选前i间物品时,预算为j时背包中装的最大总价值。

状态转移方程为:dp[j]=max{dp[j],dp[j-f[i].v]+f[i].v};

 #include"iostream"
#include"stdio.h"
#include"algorithm"
#include"string.h"
#include"cmath"
#define mx 105
using namespace std;
int dp[];//注意dp数组的大小
struct node
{
int v;
int c;
}f[mx];
bool cmp(const node a,const node b)
{
if(a.v!=b.v) return a.v<b.v;
}
int main()
{
int n,i,j,k;
while(cin>>n,n>)
{
int sum=,half;
for(i=;i<n;i++)
{
cin>>f[i].v>>f[i].c;
sum+=f[i].v*f[i].c;
}
half=sum/;
sort(f,f+n,cmp);
memset(dp,,sizeof(dp));
for(i=;i<n;i++)
{
for(k=;k<=f[i].c;k++)
{
for(j=half;j>=f[i].v;j--)
{
if(dp[j]<dp[j-f[i].v]+f[i].v) dp[j]=dp[j-f[i].v]+f[i].v;
}
}
}
cout<<sum-dp[half]<<' '<<dp[half]<<endl;
}
return ;
}

hdu acm steps Big Event in HDU的更多相关文章

  1. hdu ACM Steps Section 1 花式A+B 输入输出格式

    acm与oi很大的一个不同就是在输入格式上.oi往往是单组数据,而acm往往是多组数据,而且题目对数据格式往往各有要求,这8道a+b(吐槽..)涉及到了大量的常用的输入输出格式.https://wen ...

  2. HDU 1171 Big Event in HDU 多重背包二进制优化

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1171 Big Event in HDU Time Limit: 10000/5000 MS (Jav ...

  3. hdu1171 Big Event in HDU 01-背包

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1171 Problem ...

  4. Big Event in HDU(多重背包套用模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=1171 Big Event in HDU Time Limit: 10000/5000 MS (Java/Othe ...

  5. HDU 1171 Big Event in HDU (多重背包变形)

    Big Event in HDU Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. HDU-1171 Big Event in HDU

    Big Event in HDU Problem Description Nowadays, we all know that Computer College is the biggest depa ...

  7. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  8. Big Event in HDU

    Description Nowadays, we all know that Computer College is the biggest department in HDU. But, maybe ...

  9. Big Event in HDU(HDU1171)可用背包和母函数求解

    Big Event in HDU  HDU1171 就是求一个简单的背包: 题意:就是给出一系列数,求把他们尽可能分成均匀的两堆 如:2 10 1 20 1     结果是:20 10.才最均匀! 三 ...

随机推荐

  1. powerdesigner奇淫技

    在日常开发中数据库的设计常常需要建立模型,而powerdesigner是个不错的选择.但很多时候用powerdesigner生成模型后再去创建表结构,会觉得烦和别扭.那么能不能数据库表建好后再生成模型 ...

  2. Transfer-Encoding: chunked

    Http1.1中 使用 chunked 编码传送时 没有CONTENT_LENGTH,下载之前无法确定要下载的大小. Wininet中已经内嵌该传输协议,要查看chunked块的大小只能socket底 ...

  3. Enum:Backward Digit Sums(POJ 3187)

    反过来推 题目大意:就是农夫和这只牛又杠上了(怎么老是牛啊,能换点花样吗),给出一行数(从1到N),按杨辉三角的形式叠加到最后,可以得到一个数,现在反过来问你,如果我给你这个数,你找出一开始的序列(可 ...

  4. extjs在窗体中添加搜索框

    在extjs中添加搜索框,搜索框代码如下: this.searchField = new Ext.ux.form.SearchField({            store : this.store ...

  5. 安装win7或win8系统时UEFI和Legacy模式的设置

    很多新型号的笔记本或台式机主板都开始支持UEFI模式,比起原来的Legacy启动减少了BIOS自检,加快平台启动,如下图所示Legacy,UEFI启动过程: 安装系统,建议选择Legacy模式,在UE ...

  6. 学SEO你其实只需要半个钟

    网站上线之前: 关键词的分析以及选择: 关键词在我们网站的每个页面:首页,栏目页,文章都存在,它定位了你的网站的这个页面是做什么的,有什么内容,也是SEO中的最重要的部分. 网站必须确定并且设置好关键 ...

  7. SQL 查询CET使用领悟

    用到sql的遍历循环查询,如果不考虑用CET,估计又到了自己造轮子的时代了,现在觉得sql的CET确实是个好东西,针对SQL的递归查询,很是不错的方法: with etcRecommandINfo2( ...

  8. 面向服务的体系结构(SOA)——(1)目标与核心概念

    什么是SOA? 常常听到人们拿OOP和SOA一起来说事,诸如SOA是否可以代替面向对象(OOP)或者两者比哪个更加有优势?直接回答有难度举个例子可能显得答案更容易理解.小孩子问你该认真写作业呢?还是高 ...

  9. Java Hour 42 fastjson

    fastjson 神一样的存在,然后由于缺乏文档,很多功能完全不知道该怎么用. 42.1 字段的大小写问题 刚开始没想到会因为字段的大小写问题而导致反序列化json 失败. @Override pub ...

  10. IE8上传文件时文件本地路径变成"C:\fakepath\"的问题

    转自:http://yunzhu.iteye.com/blog/1116893 在使用<input id="file_upl" type="file" / ...