JAVA字节码解析
Java字节码指令
Java 字节码指令及javap 使用说明
### java字节码指令列表
| 字节码 | 助记符 | 指令含义 |
|---|---|---|
| 0x00 | nop | 什么都不做 |
| 0x01 | aconst_null | 将null推送至栈顶 |
| 0x02 | iconst_m1 | 将int型-1推送至栈顶 |
| 0x03 | iconst_0 | 将int型0推送至栈顶 |
| 0x04 | iconst_1 | 将int型1推送至栈顶 |
| 0x05 | iconst_2 | 将int型2推送至栈顶 |
| 0x06 | iconst_3 | 将int型3推送至栈顶 |
| 0x07 | iconst_4 | 将int型4推送至栈顶 |
| 0x08 | iconst_5 | 将int型5推送至栈顶 |
| 0x09 | lconst_0 | 将long型0推送至栈顶 |
| 0x0a | lconst_1 | 将long型1推送至栈顶 |
| 0x0b | fconst_0 | 将float型0推送至栈顶 |
| 0x0c | fconst_1 | 将float型1推送至栈顶 |
| 0x0d | fconst_2 | 将float型2推送至栈顶 |
| 0x0e | dconst_0 | 将do le型0推送至栈顶 |
| 0x0f | dconst_1 | 将do le型1推送至栈顶 |
| 0x10 | bipush | 将单字节的常量值(-128~127)推送至栈顶 |
| 0x11 | sipush | 将一个短整型常量值(-32768~32767)推送至栈顶 |
| 0x12 | ldc | 将int, float或String型常量值从常量池中推送至栈顶 |
| 0x13 | ldc_w | 将int, float或String型常量值从常量池中推送至栈顶(宽索引) |
| 0x14 | ldc2_w | 将long或do le型常量值从常量池中推送至栈顶(宽索引) |
| 0x15 | iload | 将指定的int型本地变量 |
| 0x16 | lload | 将指定的long型本地变量 |
| 0x17 | fload | 将指定的float型本地变量 |
| 0x18 | dload | 将指定的do le型本地变量 |
| 0x19 | aload | 将指定的引用类型本地变量 |
| 0x1a | iload_0 | 将第一个int型本地变量 |
| 0x1b | iload_1 | 将第二个int型本地变量 |
| 0x1c | iload_2 | 将第三个int型本地变量 |
| 0x1d | iload_3 | 将第四个int型本地变量 |
| 0x1e | lload_0 | 将第一个long型本地变量 |
| 0x1f | lload_1 | 将第二个long型本地变量 |
| 0x20 | lload_2 | 将第三个long型本地变量 |
| 0x21 | lload_3 | 将第四个long型本地变量 |
| 0x22 | fload_0 | 将第一个float型本地变量 |
| 0x23 | fload_1 | 将第二个float型本地变量 |
| 0x24 | fload_2 | 将第三个float型本地变量 |
| 0x25 | fload_3 | 将第四个float型本地变量 |
| 0x26 | dload_0 | 将第一个do le型本地变量 |
| 0x27 | dload_1 | 将第二个do le型本地变量 |
| 0x28 | dload_2 | 将第三个do le型本地变量 |
| 0x29 | dload_3 | 将第四个do le型本地变量 |
| 0x2a | aload_0 | 将第一个引用类型本地变量 |
| 0x2b | aload_1 | 将第二个引用类型本地变量 |
| 0x2c | aload_2 | 将第三个引用类型本地变量 |
| 0x2d | aload_3 | 将第四个引用类型本地变量 |
| 0x2e | iaload | 将int型数组指定索引的值推送至栈顶 |
| 0x2f | laload | 将long型数组指定索引的值推送至栈顶 |
| 0x30 | faload | 将float型数组指定索引的值推送至栈顶 |
| 0x31 | daload | 将do le型数组指定索引的值推送至栈顶 |
| 0x32 | aaload | 将引用型数组指定索引的值推送至栈顶 |
| 0x33 | baload | 将boolean或byte型数组指定索引的值推送至栈顶 |
| 0x34 | caload | 将char型数组指定索引的值推送至栈顶 |
| 0x35 | saload | 将short型数组指定索引的值推送至栈顶 |
| 0x36 | istore | 将栈顶int型数值存入指定本地变量 |
| 0x37 | lstore | 将栈顶long型数值存入指定本地变量 |
| 0x38 | fstore | 将栈顶float型数值存入指定本地变量 |
| 0x39 | dstore | 将栈顶do le型数值存入指定本地变量 |
| 0x3a | astore | 将栈顶引用型数值存入指定本地变量 |
| 0x3b | istore_0 | 将栈顶int型数值存入第一个本地变量 |
| 0x3c | istore_1 | 将栈顶int型数值存入第二个本地变量 |
| 0x3d | istore_2 | 将栈顶int型数值存入第三个本地变量 |
| 0x3e | istore_3 | 将栈顶int型数值存入第四个本地变量 |
| 0x3f | lstore_0 | 将栈顶long型数值存入第一个本地变量 |
| 0x40 | lstore_1 | 将栈顶long型数值存入第二个本地变量 |
| 0x41 | lstore_2 | 将栈顶long型数值存入第三个本地变量 |
| 0x42 | lstore_3 | 将栈顶long型数值存入第四个本地变量 |
| 0x43 | fstore_0 | 将栈顶float型数值存入第一个本地变量 |
| 0x44 | fstore_1 | 将栈顶float型数值存入第二个本地变量 |
| 0x45 | fstore_2 | 将栈顶float型数值存入第三个本地变量 |
| 0x46 | fstore_3 | 将栈顶float型数值存入第四个本地变量 |
| 0x47 | dstore_0 | 将栈顶do le型数值存入第一个本地变量 |
| 0x48 | dstore_1 | 将栈顶do le型数值存入第二个本地变量 |
| 0x49 | dstore_2 | 将栈顶do le型数值存入第三个本地变量 |
| 0x4a | dstore_3 | 将栈顶do le型数值存入第四个本地变量 |
| 0x4b | astore_0 | 将栈顶引用型数值存入第一个本地变量 |
| 0x4c | astore_1 | 将栈顶引用型数值存入第二个本地变量 |
| 0x4d | astore_2 | 将栈顶引用型数值存入第三个本地变量 |
| 0x4e | astore_3 | 将栈顶引用型数值存入第四个本地变量 |
| 0x4f | iastore | 将栈顶int型数值存入指定数组的指定索引位置 |
| 0x50 | lastore | 将栈顶long型数值存入指定数组的指定索引位置 |
| 0x51 | fastore | 将栈顶float型数值存入指定数组的指定索引位置 |
| 0x52 | dastore | 将栈顶do le型数值存入指定数组的指定索引位置 |
| 0x53 | aastore | 将栈顶引用型数值存入指定数组的指定索引位置 |
| 0x54 | bastore | 将栈顶boolean或byte型数值存入指定数组的指定索引位置 |
| 0x55 | castore | 将栈顶char型数值存入指定数组的指定索引位置 |
| 0x56 | sastore | 将栈顶short型数值存入指定数组的指定索引位置 |
| 0x57 | pop | 将栈顶数值弹出 (数值不能是long或do le类型的) |
| 0x58 | pop2 | 将栈顶的一个(long或do le类型的)或两个数值弹出(其它) |
| 0x59 | dup | 复制栈顶数值并将复制值压入栈顶 |
| 0x5a | dup_x1 | 复制栈顶数值并将两个复制值压入栈顶 |
| 0x5b | dup_x2 | 复制栈顶数值并将三个(或两个)复制值压入栈顶 |
| 0x5c | dup2 | 复制栈顶一个(long或do le类型的)或两个(其它)数值并将复制值压入栈顶 |
| 0x5d | dup2_x1 | dup_x1 指令的双倍版本 |
| 0x5e | dup2_x2 | dup_x2 指令的双倍版本 |
| 0x5f | swap | 将栈最顶端的两个数值互换(数值不能是long或do le类型的) |
| 0x60 | iadd | 将栈顶两int型数值相加并将结果压入栈顶 |
| 0x61 | ladd | 将栈顶两long型数值相加并将结果压入栈顶 |
| 0x62 | fadd | 将栈顶两float型数值相加并将结果压入栈顶 |
| 0x63 | dadd | 将栈顶两do le型数值相加并将结果压入栈顶 |
| 0x64 | is | 将栈顶两int型数值相减并将结果压入栈顶 |
| 0x65 | ls | 将栈顶两long型数值相减并将结果压入栈顶 |
| 0x66 | fs | 将栈顶两float型数值相减并将结果压入栈顶 |
| 0x67 | ds | 将栈顶两do le型数值相减并将结果压入栈顶 |
| 0x68 | imul | 将栈顶两int型数值相乘并将结果压入栈顶 |
| 0x69 | lmul | 将栈顶两long型数值相乘并将结果压入栈顶 |
| 0x6a | fmul | 将栈顶两float型数值相乘并将结果压入栈顶 |
| 0x6b | dmul | 将栈顶两do le型数值相乘并将结果压入栈顶 |
| 0x6c | idiv | 将栈顶两int型数值相除并将结果压入栈顶 |
| 0x6d | ldiv | 将栈顶两long型数值相除并将结果压入栈顶 |
| 0x6e | fdiv | 将栈顶两float型数值相除并将结果压入栈顶 |
| 0x6f | ddiv | 将栈顶两do le型数值相除并将结果压入栈顶 |
| 0x70 | irem | 将栈顶两int型数值作取模运算并将结果压入栈顶 |
| 0x71 | lrem | 将栈顶两long型数值作取模运算并将结果压入栈顶 |
| 0x72 | frem | 将栈顶两float型数值作取模运算并将结果压入栈顶 |
| 0x73 | drem | 将栈顶两do le型数值作取模运算并将结果压入栈顶 |
| 0x74 | ineg | 将栈顶int型数值取负并将结果压入栈顶 |
| 0x75 | lneg | 将栈顶long型数值取负并将结果压入栈顶 |
| 0x76 | fneg | 将栈顶float型数值取负并将结果压入栈顶 |
| 0x77 | dneg | 将栈顶do le型数值取负并将结果压入栈顶 |
| 0x78 | ishl | 将int型数值左移位指定位数并将结果压入栈顶 |
| 0x79 | lshl | 将long型数值左移位指定位数并将结果压入栈顶 |
| 0x7a | ishr | 将int型数值右(符号)移位指定位数并将结果压入栈顶 |
| 0x7b | lshr | 将long型数值右(符号)移位指定位数并将结果压入栈顶 |
| 0x7c | iushr | 将int型数值右(无符号)移位指定位数并将结果压入栈顶 |
| 0x7d | lushr | 将long型数值右(无符号)移位指定位数并将结果压入栈顶 |
| 0x7e | iand | 将栈顶两int型数值作“按位与”并将结果压入栈顶 |
| 0x7f | land | 将栈顶两long型数值作“按位与”并将结果压入栈顶 |
| 0x80 | ior | 将栈顶两int型数值作“按位或”并将结果压入栈顶 |
| 0x81 | lor | 将栈顶两long型数值作“按位或”并将结果压入栈顶 |
| 0x82 | ixor | 将栈顶两int型数值作“按位异或”并将结果压入栈顶 |
| 0x83 | lxor | 将栈顶两long型数值作“按位异或”并将结果压入栈顶 |
| 0x84 | iinc | 将指定int型变量增加指定值(i++, i–, i+=2) |
| 0x85 | i2l | 将栈顶int型数值强制转换成long型数值并将结果压入栈顶 |
| 0x86 | i2f | 将栈顶int型数值强制转换成float型数值并将结果压入栈顶 |
| 0x87 | i2d | 将栈顶int型数值强制转换成do le型数值并将结果压入栈顶 |
| 0x88 | l2i | 将栈顶long型数值强制转换成int型数值并将结果压入栈顶 |
| 0x89 | l2f | 将栈顶long型数值强制转换成float型数值并将结果压入栈顶 |
| 0x8a | l2d | 将栈顶long型数值强制转换成do le型数值并将结果压入栈顶 |
| 0x8b | f2i | 将栈顶float型数值强制转换成int型数值并将结果压入栈顶 |
| 0x8c | f2l | 将栈顶float型数值强制转换成long型数值并将结果压入栈顶 |
| 0x8d | f2d | 将栈顶float型数值强制转换成do le型数值并将结果压入栈顶 |
| 0x8e | d2i | 将栈顶do le型数值强制转换成int型数值并将结果压入栈顶 |
| 0x8f | d2l | 将栈顶do le型数值强制转换成long型数值并将结果压入栈顶 |
| 0x90 | d2f | 将栈顶do le型数值强制转换成float型数值并将结果压入栈顶 |
| 0x91 | i2b | 将栈顶int型数值强制转换成byte型数值并将结果压入栈顶 |
| 0x92 | i2c | 将栈顶int型数值强制转换成char型数值并将结果压入栈顶 |
| 0x93 | i2s | 将栈顶int型数值强制转换成short型数值并将结果压入栈顶 |
| 0x94 | lcmp | 比较栈顶两long型数值大小,并将结果(1,0,-1)压入栈顶 |
| 0x95 | fcmpl | 比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶 |
| 0x96 | fcmpg | 比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶 |
| 0x97 | dcmpl | 比较栈顶两do le型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶 |
| 0x98 | dcmpg | 比较栈顶两do le型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶 |
| 0x99 | ifeq | 当栈顶int型数值等于0时跳转 |
| 0x9a | ifne | 当栈顶int型数值不等于0时跳转 |
| 0x9b | iflt | 当栈顶int型数值小于0时跳转 |
| 0x9c | ifge | 当栈顶int型数值大于等于0时跳转 |
| 0x9d | ifgt | 当栈顶int型数值大于0时跳转 |
| 0x9e | ifle | 当栈顶int型数值小于等于0时跳转 |
| 0x9f | if_icmpeq | 比较栈顶两int型数值大小,当结果等于0时跳转 |
| 0xa0 | if_icmpne | 比较栈顶两int型数值大小,当结果不等于0时跳转 |
| 0xa1 | if_icmplt | 比较栈顶两int型数值大小,当结果小于0时跳转 |
| 0xa2 | if_icmpge | 比较栈顶两int型数值大小,当结果大于等于0时跳转 |
| 0xa3 | if_icmpgt | 比较栈顶两int型数值大小,当结果大于0时跳转 |
| 0xa4 | if_icmple | 比较栈顶两int型数值大小,当结果小于等于0时跳转 |
| 0xa5 | if_acmpeq | 比较栈顶两引用型数值,当结果相等时跳转 |
| 0xa6 | if_acmpne | 比较栈顶两引用型数值,当结果不相等时跳转 |
| 0xa7 | goto | 无条件跳转 |
| 0xa8 | jsr | 跳转至指定16位offset位置,并将jsr下一条指令地址压入栈顶 |
| 0xa9 | ret | 返回至本地变量 |
| 0xaa | tableswitch | 用于switch条件跳转,case值连续(可变长度指令) |
| 0xab | lookupswitch | 用于switch条件跳转,case值不连续(可变长度指令) |
| 0xac | ireturn | 从当前方法返回int |
| 0xad | lreturn | 从当前方法返回long |
| 0xae | freturn | 从当前方法返回float |
| 0xaf | dreturn | 从当前方法返回do le |
| 0xb0 | areturn | 从当前方法返回对象引用 |
| 0xb1 | return | 从当前方法返回void |
| 0xb2 | getstatic | 获取指定类的静态域,并将其值压入栈顶 |
| 0xb3 | putstatic | 为指定的类的静态域赋值 |
| 0xb4 | getfield | 获取指定类的实例域,并将其值压入栈顶 |
| 0xb5 | putfield | 为指定的类的实例域赋值 |
| 0xb6 | invokevirtual | 调用实例方法 |
| 0xb7 | invokespecial | 调用超类构造方法,实例初始化方法,私有方法 |
| 0xb8 | invokestatic | 调用静态方法 |
| 0xb9 | invokeinterface | 调用接口方法 |
| 0xba | – | 无此指令 |
| 0xbb | new | 创建一个对象,并将其引用值压入栈顶 |
| 0xbc | newarray | 创建一个指定原始类型(如int, float, char…)的数组,并将其引用值压入栈顶 |
| 0xbd | anewarray | 创建一个引用型(如类,接口,数组)的数组,并将其引用值压入栈顶 |
| 0xbe | arraylength | 获得数组的长度值并压入栈顶 |
| 0xbf | athrow | 将栈顶的异常抛出 |
| 0xc0 | checkcast | 检验类型转换,检验未通过将抛出ClassCastException |
| 0xc1 | instanceof | 检验对象是否是指定的类的实例,如果是将1压入栈顶,否则将0压入栈顶 |
| 0xc2 | monitorenter | 获得对象的锁,用于同步方法或同步块 |
| 0xc3 | monitorexit | 释放对象的锁,用于同步方法或同步块 |
| 0xc4 | wide | <待补充> |
| 0xc5 | multianewarray | 创建指定类型和指定维度的多维数组(执行该指令时,操作栈中必须包含各维度的长度值),并将其引用值压入栈顶 |
| 0xc6 | ifnull | 为null时跳转 |
| 0xc7 | ifnonnull | 不为null时跳转 |
| 0xc8 | goto_w | 无条件跳转(宽索引) |
| 0xc9 | jsr_w | 跳转至指定32位offset位置,并将jsr_w下一条指令地址压入栈顶 |
JVM指令助记符
变量到操作数栈:iload,iload_,lload,lload_,fload,fload_,dload,dload_,aload,aload_
操作数栈到变量:istore,istore_,lstore,lstore_,fstore,fstore_,dstore,dstor_,astore,astore_
常数到操作数栈:bipush,sipush,ldc,ldc_w,ldc2_w,aconst_null,iconst_ml,iconst_,lconst_,fconst_,dconst_
加:iadd,ladd,fadd,dadd
减:is ,ls ,fs ,ds
乘:imul,lmul,fmul,dmul
除:idiv,ldiv,fdiv,ddiv
余数:irem,lrem,frem,drem
取负:ineg,lneg,fneg,dneg
移位:ishl,lshr,iushr,lshl,lshr,lushr
按位或:ior,lor
按位与:iand,land
按位异或:ixor,lxor
类型转换:i2l,i2f,i2d,l2f,l2d,f2d(放宽数值转换)
i2b,i2c,i2s,l2i,f2i,f2l,d2i,d2l,d2f(缩窄数值转换)
创建类实便:new
创建新数组:newarray,anewarray,multianwarray
访问类的域和类实例域:getfield,putfield,getstatic,putstatic
把数据装载到操作数栈:baload,caload,saload,iaload,laload,faload,daload,aaload
从操作数栈存存储到数组:bastore,castore,sastore,iastore,lastore,fastore,dastore,aastore
获取数组长度:arraylength
检相类实例或数组属性:instanceof,checkcast
操作数栈管理:pop,pop2,dup,dup2,dup_xl,dup2_xl,dup_x2,dup2_x2,swap
有条件转移:ifeq,iflt,ifle,ifne,ifgt,ifge,ifnull,ifnonnull,if_icmpeq,if_icmpene,
if_icmplt,if_icmpgt,if_icmple,if_icmpge,if_acmpeq,if_acmpne,lcmp,fcmpl
fcmpg,dcmpl,dcmpg
复合条件转移:tableswitch,lookupswitch
无条件转移:goto,goto_w,jsr,jsr_w,ret
调度对象的实便方法:invokevirt l
调用由接口实现的方法:invokeinterface
调用需要特殊处理的实例方法:invokespecial
调用命名类中的静态方法:invokestatic
方法返回:ireturn,lreturn,freturn,dreturn,areturn,return
异常:athrow
finally关键字的实现使用:jsr,jsr_w,ret
JAVA字节码解析的更多相关文章
- 推荐Java字节码解析工具classpy
Classpy Classpy is a GUI tool for investigating Java class file, Lua binary chunk, Wasm binary code, ...
- java编译后字节码解析
java编译后字节码解析 参考网摘: https://my.oschina.net/indestiny/blog/194260
- OpenJDK源码研究笔记(八)-详细解析如何读取Java字节码文件(.class)
在上一篇OpenJDK源码研究笔记(七)–Java字节码文件(.class)的结构中,我们大致了解了Java字节码文件的结构. 本篇详细地介绍了如何读取.class文件的大部分细节. 1.构造文件 ...
- Java字节码例子解析
举个简单的例子: public class Hello { public static void main(String[] args) { String string1 = ...
- 【JVM源码解析】模板解释器解释执行Java字节码指令(上)
本文由HeapDump性能社区首席讲师鸠摩(马智)授权整理发布 第17章-x86-64寄存器 不同的CPU都能够解释的机器语言的体系称为指令集架构(ISA,Instruction Set Archit ...
- Java字节码(.class文件)格式详解(一)
原文链接:http://www.blogjava.net/DLevin/archive/2011/09/05/358033.html 小介:去年在读<深入解析JVM>的时候写的,记得当时还 ...
- Java字节码操纵框架ASM小试
本文主要内容: ASM是什么 JVM指令 Java字节码文件 ASM编程模型 ASM示例 参考资料汇总 JVM详细指令 ASM是什么 ASM是一个Java字节码操纵框架,它能被用来动态生成类或者增强既 ...
- 打造一个简单的Java字节码反编译器
简介 本文示范了一种反编译Java字节码的方法,首先通过解析class文件,然后将解析的结果转成java代码.但是本文并没有覆盖所有的class文件的特性和指令,只针对部分规范进行解析. 所有的代码代 ...
- 从 HelloWorld 看 Java 字节码文件结构
很多时候,我们都是从代码层面去学习如何编程,却很少去看看一个个 Java 代码背后到底是什么.今天就让我们从一个最简单的 Hello World 开始看一看 Java 的类文件结构. 在开始之前,我们 ...
随机推荐
- ASP.NET 5系列教程 (六): 在 MVC6 中创建 Web API
ASP.NET 5.0 的主要目标之一是统一MVC 和 Web API 框架应用. 接下来几篇文章中您会了解以下内容: ASP.NET MVC 6 中创建简单的web API. 如何从空的项目模板中启 ...
- SignalR实现服务器与客户端的实时通信
百度百科给它的定义 实现实时通信.什么是实时通信的Web呢?就是让客户端(Web页面)和服务器端可以互相通知消息及调用方法,当然这是实时操作的. WebSockets是HTML5提供的新的API,可以 ...
- ubuntu下firefox无法看bilibili解决方案
突然发现,在ubuntu中使用firefox打开bilibili网站无法加载视频与弹幕,在网上搜到的可能的问题为:linux下的firefox使用的flash player是老版本,bilibili不 ...
- chrome浏览器扩展的事件处理
关于chrome扩展开发的栗子已经有很多了,问问度娘基本能满足你的欲望, 我想说的是扩展和页面间的数据传递问题. 我们知道写扩展有个必须的文件就是“manifest.json”, 这个里面定义了一个和 ...
- Android兼容包multidex的开发和构建方法
在Android开发中,函数方法超过65k限制后,我们就常常会用到multidex分包解决,但是multidex的配置,对系统apk的构建.签名.打包复杂性大大的增加,严重的降低了构建效率.那这个问题 ...
- BizTalk 2013R2 WCF-LOB Oracle Adapter安装配置/问题&解决方法
BizTalk 2013R2 WCF-LOB Oracle Adapter安装配置/问题&解决方法 安装Oracle Adapter 安装Oracle客户端 BizTalk 2013R2 安装 ...
- J2EE Web开发入门—通过action是以传统方式返回JSON数据
关键字:maven.m2eclipse.JSON.Struts2.Log4j2.tomcat.jdk7.Config Browser Plugin Created by Bob 20131031 l ...
- URLEncode与URLDecode总结与实现
URLEncode: 用于编码URL字符串,数字和字母保持不变,空格变为'+',其他(如:中文字符)先转换为十六进制表示,然后在每个字节前面加一个标识符%,例如:“啊”字 Ascii的十六进制是0xB ...
- ZooKeeper快速搭建
原文地址:http://nileader.blog.51cto.com/1381108/795230 下载PDF版本 本文是ZooKeeper的快速搭建,旨在帮助大家以最快的速度完成一个ZK集群的搭建 ...
- 【实用技巧】取消Win7开机账户的手动选择
因为前面碰到的一些事情,稍有感慨. 关于win7的一些小技巧都不是什么很有技术含量东西,或者说很浅显.我说一个技巧,也许很多人都知道,也许也早有人说过.但我想说的是我不是在炫耀什么,我只是想分享一些我 ...