Hadoop map和reduce数量估算
Hadoop在运行一个mapreduce job之前,需要估算这个job的maptask数和reducetask数。首先分析一下job的maptask数,当一个job提交时,jobclient首先分析job被拆分的split数量,然后吧job.split文件放置在HDFS中,一个job的MapTask数量就等于split的个数。
job.split中包含split的个数由FileInputFormat.getSplits计算出,方法的逻辑如下:
1. 读取参数mapred.map.tasks,这个参数默认设置为0,生产系统中很少修改。
2. 计算input文件的总字节数,总字节数/(mapred.map.tasks==0 ? 1: mapred.map.tasks )=goalsize
3. 每个split的最小值minSize由mapred.min.split.size参数设置,这个参数默认设置为0,生产系统中很少修改。
4. 调用computeSplitSize方法,计算出splitsize= Math.max(minSize, Math.min(goalSize, blockSize)),通常这个值=blockSize,输入的文件较小,文件字节数之和小于blocksize时,splitsize=输入文件字节数之和。
5. 对于input的每个文件,计算split的个数。
a) 文件大小/splitsize>1.1,创建一个split,这个split的字节数=splitsize,文件剩余字节数=文件大小-splitsize
b) 文件剩余字节数/splitsize<1.1,剩余的部分作为一个split
举例说明:
1. input只有一个文件,大小为100M,splitsize=blocksize,则split数为2,第一个split为64M,第二个为36M
2. input只有一个文件,大小为65M,splitsize=blocksize,则split数为1,split大小为65M
3. input只有一个文件,大小为129M,splitsize=blocksize,则split数为2,第一个split为64M,第二个为65M(最后一个split的大小可能超过splitsize)
4. input只有一个文件,大小为20M ,splitsize=blocksize,则split数为1,split大小为20M
5. input有两个文件,大小为100M和20M,splitsize=blocksize,则split数为3,第一个文件分为两个split,第一个split为64M,第二个为36M,第二个文件为一个split,大小为20M
6. input有两个文件,大小为25M和20M,splitsize=blocksize,则split数为2,第一个文件为一个split,大小为25M,第二个文件为一个split,大小为20M
假设一个job的input大小固定为100M,当只包含一个文件时,split个数为2,maptask数为2,但当包含10个10M的文件时,maptask数为10。
下面来分析reducetask,纯粹的mapreduce task的reduce task数很简单,就是参数mapred.reduce.tasks的值,hadoop-site.xml文件中和mapreduce job运行时不设置的话默认为1。
在HIVE中运行sql的情况又不同,hive会估算reduce task的数量,估算方法如下:
通常是ceil(input文件大小/1024*1024*1024),每1GB大小的输入文件对应一个reduce task。
特殊的情况是当sql只查询count(*)时,reduce task数被设置成1。
总结:通过map和reducetask数量的分析可以看出,hadoop/hive估算的map和reduce task数可能和实际情况相差甚远。假定某个job的input数据量庞大,reduce task数量也会随之变大,而通过join和group by,实际output的数据可能不多,但reduce会输出大量的小文件,这个job的下游任务将会启动同样多的map来处理前面reduce产生的大量文件。在生产环境中每个user group有一个map task数的限额,一个job启动大量的map task很显然会造成其他job等待释放资源。
Hive对于上面描述的情况有一种补救措施,参数hive.merge.smallfiles.avgsize控制hive对output小文件的合并,当hiveoutput的文件的平均大小小于hive.merge.smallfiles.avgsize-默认为16MB左右,hive启动一个附加的mapreducejob合并小文件,合并后文件大小不超过hive.merge.size.per.task-默认为256MB。
尽管Hive可以启动小文件合并的过程,但会消耗掉额外的计算资源,控制单个reduce task的输出大小>64MB才是最好的解决办法。
map数据计算示例:
hive> set dfs.block.size;
dfs.block.size=268435456
hive> set mapred.map.tasks;
mapred.map.tasks=2
文件块大小为256MB,map.tasks为2
查看文件大小和文件数:
[dwapp@dw-yuntigw-63 hadoop]$ hadoop dfs -ls /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25;
Found 18 items
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 290700555 2012-11-26 19:00 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000000_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 290695945 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000001_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 290182606 2012-11-26 19:00 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000002_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 271979933 2012-11-26 19:00 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000003_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258448208 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000004_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258440338 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000005_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258419852 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000006_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258347423 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000007_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258349480 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000008_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258301657 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000009_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258270954 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000010_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258266805 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000011_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258253133 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000012_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258236047 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000013_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258239072 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000014_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258170671 2012-11-26 19:00 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000015_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258160711 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000016_0
-rw-r----- 3 alidwicbu cug-alibaba-dw-icbu 258085783 2012-11-26 18:59 /group/alibaba-dw-icbu/hive/bdl_en12_pageview_fatdt0_d/hp_stat_date=2012-11-25/attempt_201211151327_1675393_m_000017_0
文件: | 大小Bytes | 大小MB | splitsize(MB) | 每个文件需要的map数量 | |
文件1 | 290700555 | 277.2336531 | 256 | 1.082943957 | |
文件2 | 290695945 | 277.2292566 | 256 | 1.082926784 | |
文件3 | 290182606 | 276.7396984 | 256 | 1.081014447 | |
文件4 | 271979933 | 259.3802767 | 256 | 1.013204206 | |
文件5 | 258448208 | 246.4754181 | 256 | 0.962794602 | |
文件6 | 258440338 | 246.4679127 | 256 | 0.962765284 | |
文件7 | 258419852 | 246.4483757 | 256 | 0.962688968 | |
文件8 | 258347423 | 246.379302 | 256 | 0.962419149 | |
文件9 | 258349480 | 246.3812637 | 256 | 0.962426811 | |
文件10 | 258301657 | 246.3356562 | 256 | 0.962248657 | |
文件11 | 258270954 | 246.3063755 | 256 | 0.962134279 | |
文件12 | 258266805 | 246.3024187 | 256 | 0.962118823 | |
文件13 | 258253133 | 246.2893801 | 256 | 0.962067891 | |
文件14 | 258236047 | 246.2730856 | 256 | 0.962004241 | |
文件15 | 258239072 | 246.2759705 | 256 | 0.96201551 | |
文件16 | 258170671 | 246.2107382 | 256 | 0.961760696 | |
文件17 | 258160711 | 246.2012396 | 256 | 0.961723592 | |
文件18 | 258085783 | 246.1297827 | 256 | 0.961444464 | |
总文件大小: | 4759549173 | 4539.059804 |
goalSize = 4539.059804 (文件总大小)/ mapred.map.tasks(2) = 2269.529902MB
因此splitsize取值为256MB,所以一共分配18个map。
修改map.tasks参数为32
set mapred.map.tasks = 32;
文件: | 大小Bytes | 大小MB | splitsize(MB) | 每个文件需要的map数量 | |
文件1 | 290700555 | 277.2336531 | 141.8 | 1.955103336 | |
文件2 | 290695945 | 277.2292566 | 141.8 | 1.955072332 | |
文件3 | 290182606 | 276.7396984 | 141.8 | 1.951619876 | |
文件4 | 271979933 | 259.3802767 | 141.8 | 1.829198002 | |
文件5 | 258448208 | 246.4754181 | 141.8 | 1.738190537 | |
文件6 | 258440338 | 246.4679127 | 141.8 | 1.738137607 | |
文件7 | 258419852 | 246.4483757 | 141.8 | 1.737999829 | |
文件8 | 258347423 | 246.379302 | 141.8 | 1.737512708 | |
文件9 | 258349480 | 246.3812637 | 141.8 | 1.737526543 | |
文件10 | 258301657 | 246.3356562 | 141.8 | 1.737204909 | |
文件11 | 258270954 | 246.3063755 | 141.8 | 1.736998417 | |
文件12 | 258266805 | 246.3024187 | 141.8 | 1.736970513 | |
文件13 | 258253133 | 246.2893801 | 141.8 | 1.736878562 | |
文件14 | 258236047 | 246.2730856 | 141.8 | 1.73676365 | |
文件15 | 258239072 | 246.2759705 | 141.8 | 1.736783995 | |
文件16 | 258170671 | 246.2107382 | 141.8 | 1.736323965 | |
文件17 | 258160711 | 246.2012396 | 141.8 | 1.736256979 | |
文件18 | 258085783 | 246.1297827 | 141.8 | 1.735753051 | |
总文件大小: | 4759549173 | 4539.059804 |
goalSize = 4539.059804 / mapred.map.tasks(32) = 141.8456189
因此splitsize取值为141.8MB,所以一共分配36个map。
Hadoop map和reduce数量估算的更多相关文章
- Hadoop 中关于 map,reduce 数量设置
map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务 ...
- 如何确定 Hadoop map和reduce的个数--map和reduce数量之间的关系是什么?
1.map和reduce的数量过多会导致什么情况?2.Reduce可以通过什么设置来增加任务个数?3.一个task的map数量由谁来决定?4.一个task的reduce数量由谁来决定? 一般情况下,在 ...
- 如何确定Hadoop中map和reduce的个数--map和reduce数量之间的关系是什么?
一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的 goalSize = totalSize / mapred.map. ...
- Hadoop :map+shuffle+reduce和YARN笔记分享
今天做了一个hadoop分享,总结下来,包括mapreduce,及shuffle深度讲解,还有YARN框架的详细说明等. v\:* {behavior:url(#default#VML);} o\:* ...
- hive优化,控制map、reduce数量
一.调整hive作业中的map数 1.通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为1 ...
- MapReduce剖析笔记之五:Map与Reduce任务分配过程
在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程.中间留了一个问题,就是任务到底是怎么分配的.任务的分配自然是由JobTracker做出来的,具体 ...
- hadoop中map和reduce的数量设置问题
转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务 ...
- Hadoop map reduce 任务数量优化
mapred.tasktracker.map.tasks.maximum 官方解释:The maximum number of map tasks that will be run simultan ...
- hadoop中map和reduce的数量设置
hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制 ...
随机推荐
- JQuery教程
1.是javaScript库(js文件) 2.使用:script标签 3.语法:$开头 $().action() 列如:$('div').css("color",'red'); 4 ...
- singleton注意
如果singleton里面的构造函数里面对资源进行了初始化,那么程序退出时,需要一个release进行资源释放,并且设置instance = null;
- 在ios下提示“@synthesize of ‘weak’ property is only allowed in ARC or GC mode”
现在的项目是手动内存管理,所以在引入第三方资源库时候,很多资源库更新以后都开始使用arc进行编码,这样就导致两种代码风格不一致,有的时候可能开发者也没有注意到这些问题,反正用的时候也没有报错,就直接使 ...
- Android Studio签名打包的两种方式
签名打包的两种方式: 注:给我们自己开发的app签名,就代表着我自己的版权,以后要进行升级,也必须要使用相同的签名才行.签名就代表着自己的身份(即keystore),多个app可以使用同一个签名. 如 ...
- Linq ExecuteQuery,ExecuteCommand
//连接语句 public readonly string sqlconn = ConfigurationManager.ConnectionStrings["Transaction_9_3 ...
- WP8:Unity3D之间的值传递
在前面的讨论中,我们介绍了如何在Unity3D for WP8中使用高于.Net 3.5的第三方库,传送门:http://www.cnblogs.com/zhxilin/p/3311240.html ...
- 将GitLab的数据库导入阿里云PostgreSQL RDS
GitLab的数据库用的是PostgreSQL,之前由于阿里云RDS不支持PostgreSQL,只能将GitLab的数据库部署在云服务器上. 6月1日得知阿里云推出了PostgreSQL RDS,于是 ...
- VS中自定义代码高亮
文章:http://www.cnblogs.com/aanbpsd/p/Viola_ide_glslEditor.html 帮助: 编辑扩展点: https://msdn.microsoft.com/ ...
- [转]DOS特殊字符转义方法
http://www.robvanderwoude.com/escapechars.php 期望得到的字符 转义后字符 说明 % %% May not always be required in do ...
- 真实世界:使用WCF扩展在方法调用前初始化环境
OperationInvoker 介绍 OperationInvoker 是 WCF 运行时模型中在调用最终用户代码前的最后一个扩展点,OperationInvoker 负责最终调用 Service ...