简单几何(求凸包点数) POJ 1228 Grandpa's Estate
题意:判断一些点的凸包能否唯一确定
分析:如果凸包边上没有其他点,那么边想象成橡皮筋,可以往外拖动,这不是唯一确定的。还有求凸包的点数<=2的情况一定不能确定。
/************************************************
* Author :Running_Time
* Created Time :2015/11/4 星期三 10:24:45
* File Name :POJ_1228.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double EPS = 1e-10;
const double PI = acos (-1.0);
int dcmp(double x) {
if (fabs (x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
struct Point {
double x, y;
Point () {}
Point (double x, double y) : x (x), y (y) {}
Point operator - (const Point &r) const {
return Point (x - r.x, y - r.y);
}
bool operator < (const Point &r) const {
return x < r.x || (x == r.x && y < r.y);
}
bool operator == (const Point &r) const {
return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
}
};
typedef Point Vector;
Point read_point(void) {
double x, y; scanf ("%lf%lf", &x, &y);
return Point (x, y);
}
double dot(Point a, Point b) {
return a.x * b.x + a.y * b.y;
}
double cross(Vector A, Vector B) {
return A.x * B.y - A.y * B.x;
}
bool on_seg(Point p, Point a, Point b) {
return dcmp (cross (a - p, b - p)) == 0 && dcmp (dot (a - p, b - p)) < 0;
} /*
凸包边上无点:<= 凸包边上有点:<
*/
vector<Point> convex_hull(vector<Point> ps) {
sort (ps.begin (), ps.end ());
int n = ps.size (), k = 0;
vector<Point> qs (n * 2);
for (int i=0; i<n; ++i) {
while (k > 1 && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--;
qs[k++] = ps[i];
}
for (int t=k, i=n-2; i>=0; --i) {
while (k > t && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--;
qs[k++] = ps[i];
}
qs.resize (k - 1);
return qs;
} int main(void) {
int T; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
vector<Point> ps;
for (int i=0; i<n; ++i) ps.push_back (read_point ());
if (n == 1) {
puts ("NO"); continue;
}
vector<Point> qs = convex_hull (ps);
if (qs.size () == n || qs.size () <= 2) {
puts ("NO"); continue;
}
qs.push_back (qs[0]);
int m = qs.size ();
bool flag = false;
for (int i=0; i<m-1; ++i) {
flag = false;
for (int j=0; j<ps.size (); ++j) {
if (ps[j] == qs[i] || ps[j] == qs[i+1]) continue;
if (on_seg (ps[j], qs[i], qs[i+1])) {
flag = true; break;
}
}
if (!flag) break;
}
if (flag) puts ("YES");
else puts ("NO");
} //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n"; return 0;
}
简单几何(求凸包点数) POJ 1228 Grandpa's Estate的更多相关文章
- POJ 1228 - Grandpa's Estate 稳定凸包
稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...
- POJ 1228 Grandpa's Estate --深入理解凸包
题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...
- POJ 1228 Grandpa's Estate(凸包)
Grandpa's Estate Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11289 Accepted: 3117 ...
- POJ 1228 Grandpa's Estate 凸包 唯一性
LINK 题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变. 思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线 ...
- poj - 1228 - Grandpa's Estate
题意:原来一个凸多边形删去一些点后剩n个点,问这个n个点能否确定原来的凸包(1 <= 测试组数t <= 10,1 <= n <= 1000). 题目链接:http://poj. ...
- POJ 1228 Grandpa's Estate(凸包唯一性判断)
Description Being the only living descendant of his grandfather, Kamran the Believer inherited all o ...
- Codeforces 935 简单几何求圆心 DP快速幂求与逆元
A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #def ...
- 简单几何(数学公式+凸包) UVA 11168 Airport
题目传送门 题意:找一条直线,使得其余的点都在直线的同一侧,而且使得到直线的平均距离最短. 分析:训练指南P274,先求凸包,如果每条边都算一边的话,是O (n ^ 2),然而根据公式知直线一般式为A ...
- 【POJ】1228 Grandpa's Estate(凸包)
http://poj.org/problem?id=1228 随便看看就能发现,凸包上的每条边必须满足,有相邻的边和它斜率相同(即共线或凸包上每个点必须一定在三点共线上) 然后愉快敲完凸包+斜率判定, ...
随机推荐
- 还是畅通工程(MST)
还是畅通工程 Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- magic-encoding
(文章都是从我的个人主页上粘贴过来的,大家也可以访问我的主页 www.iwangzheng.com) 今天页面跳转都出问题了,各种方法都试过了, log里说语法错误,问了pp,他说是汉字的原因...果 ...
- git寻根——^和~的区别
一. 引子 在git操作中,我们可以使用checkout命令检出某个状态下文件,也可以使用reset命令重置到某个状态,这里所说的“某个状态”其实对应的就是一个提交(commit). 我们可以把一个g ...
- OpenCV入门(二)
这次主要学习了下滤波,就当复习了图像处理的知识了:http://blog.csdn.net/poem_qianmo/article/details/22745559 代码实现比较简单,但关于通过滚动条 ...
- HDU 1707 简单模拟 Spring-outing Decision
Spring-outing Decision Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- zoj3745 Salary Increasing
OJ Problem Set - 3745 Salary Increasing Time Limit: 2 Seconds Memory Limit: 65536 KB Edward has ...
- 《linux备份与恢复之一》.tar.bz2与.tar.gz格式的文本压缩率比较
对于文本压缩,据说bzip的算法要优于gzip,从而拥有更好的压缩比.特地找了两个文件来做一下测试,以下为测试结果: (1)源文件为591MB, .tar.bz2文件为61MB(10.32%), ...
- cobbler部署机器的默认密码
修改cobbler的默认密码: 用 openssl 生成一串密码后加入到 cobbler 的配置文件(/etc/cobbler/settings)里,替换 default_password_crypt ...
- POJ 1017
http://poj.org/problem?id=1017 题意就是有6种规格的物品,给你一些不同规格的物品,要求你装在盒子里,盒子是固定尺寸的也就是6*6,而物品有1*1,2*2,3*3,4*4, ...
- python时间转换
#设a为字符串 import time a = "2011-09-28 10:00:00" #中间过程,一般都需要将字符串转化为时间数组 time.strptime(a,'%Y-% ...