Exact cover

Time Limit: 15s Memory Limit: 128MB

Special Judge Submissions: 6012 Solved: 3185
DESCRIPTION
There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
INPUT
There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
OUTPUT
First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
SAMPLE INPUT
6 7
3 1 4 7
2 1 4
3 4 5 7
3 3 5 6
4 2 3 6 7
2 2 7
SAMPLE OUTPUT
3 2 4 6
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define MaxNode 100010
#define MaxN 1010
#define MaxM 1010 struct DLX
{
int n,m,size;
int U[MaxNode],D[MaxNode],R[MaxNode],L[MaxNode];
int Row[MaxNode],Col[MaxNode];
int H[MaxN],S[MaxM];
int ansd, ans[MaxN]; void Init(int _n,int _m)
{
n=_n;
m=_m;
for(int i=;i<=m;i++)
{
S[i]=;
U[i]=D[i]=i;
L[i]=i-;
R[i]=i+;
}
R[m]=;L[]=m;
size=m;
for(int i=;i<=n;i++)
H[i]=-;
}
void Link(int r,int c)
{
++S[Col[++size]=c];
Row[size]=r;
U[size]=U[c];
D[U[c]]=size;
D[size]=c;
U[c]=size;
if(H[r]==-) H[r]=L[size]=R[size]=size;
else
{
L[size]=L[H[r]];
R[L[H[r]]]=size;
R[size]=H[r];
L[H[r]]=size;
}
}
void Remove(int c)
{
L[R[c]]=L[c];
R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
{
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
S[Col[j]]--;
}
}
}
void Resume(int c)
{
for(int i = U[c];i != c;i = U[i])
{
for(int j = L[i];j != i;j = L[j])
{
U[D[j]]=j;
D[U[j]]=j;
S[Col[j]]++;
}
}
L[R[c]] =c;
R[L[c]] =c;
}
bool Dance(int d)
{
if(R[]==)
{
ansd=d;
return ;
}
int c=R[];
for(int i=R[];i!=;i=R[i])
if(S[i]<S[c]) c=i;
Remove(c);
for(int i=D[c];i!=c;i=D[i])
{
ans[d]=Row[i];
for(int j=R[i];j!=i;j=R[j]) Remove(Col[j]); //移除
if(Dance(d+)) return ;
for(int j=L[i];j!=i;j=L[j]) Resume(Col[j]); //回标
}
Resume(c);
return ;
}
}g;
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
g.Init(n,m);
for(int i=;i<=n;i++)
{
int num,j;
scanf("%d",&num);
while(num--)
{
scanf("%d",&j);
g.Link(i,j);
}
}
if(!g.Dance()) printf("NO\n");
else
{
printf("%d",g.ansd);
for(int i=;i<g.ansd;i++)
printf(" %d",g.ans[i]);
printf("\n");
}
}
return ;
}

[HUST 1017] Exact cover的更多相关文章

  1. HUST 1017 - Exact cover (Dancing Links 模板题)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...

  2. Dancing Link --- 模板题 HUST 1017 - Exact cover

    1017 - Exact cover Problem's Link:   http://acm.hust.edu.cn/problem/show/1017 Mean: 给定一个由0-1组成的矩阵,是否 ...

  3. HUST 1017 Exact cover (Dancing links)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 6110 次提交 3226 次通过 题目描述 There is an N*M matrix with only 0 ...

  4. [ACM] HUST 1017 Exact cover (Dancing Links,DLX模板题)

    DESCRIPTION There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  5. (简单) HUST 1017 Exact cover , DLX+精确覆盖。

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  6. HUST 1017 Exact cover(DLX精确覆盖)

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  7. HUST 1017 Exact cover dance links

    学习:请看 www.cnblogs.com/jh818012/p/3252154.html 模板题,上代码 #include<cstdio> #include<cstring> ...

  8. [DLX] hust 1017 Exact cover

    题意: 给你N个包,要拿到M个东西(编号1~M每一个仅仅能有一个) 然后每一个包里有k个东西,每一个东西都有编号. 思路: 舞蹈连模板题 代码: #include"stdio.h" ...

  9. hustoj 1017 - Exact cover dancing link

    1017 - Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 5851 Solved: 3092 ...

随机推荐

  1. 10_控制线程_线程让步yield

    [线程让步yield()方法] yield()方法可以让当前正在执行的线程暂停,但它不会阻塞该线程,它只是将该线程从运行状态转入就绪状态. 只是让当前的线程暂停一下,让系统的线程调度器重新调度一次. ...

  2. java培训(1-4节课)

    课程安排:JavaEE方向(控制台程序,GUI程序,Web程序,手机程序)(dos命令是控制台程序:QQ是GUI程序,放在计算机上:QQ空间是Web程序,放在腾讯公司) 讲课的13本教材:C语言,Ja ...

  3. KMP(匹配)

    Description 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? Input 输入中含有一些数据, ...

  4. C++ 二维数组(双重指针作为函数参数)

    本文的学习内容参考:http://blog.csdn.net/yunyun1886358/article/details/5659851 http://blog.csdn.net/xudongdong ...

  5. 九度OJ 1209 最小邮票数 -- 动态规划

    题目地址:http://ac.jobdu.com/problem.php?pid=1209 题目描述: 有若干张邮票,要求从中选取最少的邮票张数凑成一个给定的总值.     如,有1分,3分,3分,3 ...

  6. Pigcms中WeixinAction的简略版流程

    if $this->ali = 0; 1.new wechat() //该类存于PigCms/lib/ORG/Wechat.class.php 2.list($content,$type) = ...

  7. Windows下Wamp装不上Memcache扩展

    windows下wamp装不上memcache扩展2015.03.20 No Comments 1,243 views用的是WAMP集成包,PHP版本5.5.12http://windows.php. ...

  8. Yii 获取验证码与Yii常用的URL

    $this->createAction('captcha')->getVerifyCode(); //获取当前验证码的值 当前页面url  echo Yii::app()->requ ...

  9. 鸟哥私房菜笔记:Iptables:数据包过滤软件

    数据包进入流程:规则顺序的重要性 iptables利用的是数据包过滤机制,所以它会分析数据包的包头数据.根据包头数据与定义的规则来决定该数据包是否可以进入主机或者是被丢弃.也就是说,根据数据包的分析资 ...

  10. 微软职位内部推荐-ATG Engineer II

    微软近期Open的职位: ATG Engineer - GeneralistReady to work on some of the most advanced hardware on the pla ...